You will need the Flash plugin to view this publication

Download the Flash plugin for free here. Just refresh this page after installing Flash.
Also make sure that javascript is enabled in your browser.

Alternatively, you can download this publication in PDF-format - Click here.

Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9
Page 10
Page 11
Page 12
Page 13
Page 14
Page 15
Page 16
Page 17
Page 18
Page 19
Page 20
Page 21
Page 22
Page 23
Page 24
Page 25
Page 26
Page 27
Page 28
Page 29
Page 30
Page 31
Page 32
Page 33
Page 34
Page 35
Page 36
Page 37
Page 38
Page 39
Page 40
Page 41
Page 42
Page 43
Page 44
Page 45
Page 46
Page 47
Page 48
Page 49
Page 50
Page 51
Page 52
Page 53
Page 54
Page 55
Page 56
Page 57
Page 58
Page 59
Page 60
Page 61
Page 62
Page 63
Page 64
Page 65
Page 66
Page 67
Page 68
Page 69
Page 70
Page 71
Page 72
Page 73
Page 74
Page 75
Page 76
Page 77
Page 78
Page 79
Page 80
Page 81
Page 82
Page 83
Page 84
Page 85
Page 86
Page 87
Page 88
Page 89
Page 90
Page 91
Page 92
Page 93
Page 94
Page 95
Page 96
Page 97
Page 98
Page 99
Page 100
Page 101
Page 102
Page 103
Page 104
Page 105
Page 106
Page 107
Page 108
Page 109
Page 110
Page 111
Page 112
Page 113
Page 114
Page 115
Page 116
Page 117
Page 118
Page 119
Page 120
Page 121
Page 122
Page 123
Page 124
Page 125
Page 126
Page 127
Page 128
Page 129
Page 130
Page 131
Page 132
Page 133
Page 134
Page 135
Page 136
Page 137
Page 138
Page 139
Page 140
Page 141
Page 142
Page 143
Page 144
Page 145
Page 146
Page 147
Page 148
Page 149
Page 150
Page 151
Page 152
Page 153
Page 154
Page 155
Page 156
Page 157
Page 158
REPAIRINGTHERAINFOREST2ndEditionSteveGoosemandNigelI.JTucker AjointpublicationotheWetTropicsManagementAuthorityandBiotropicaAustraliaPty.Ltd.NationalLibraryofAustraliaCataloguing-in-PublicationentryISBN978-1-921591-66-2CiteasGoosemS.TuckerN.I.J.2013.RepairingtheRainorestsecondedition.WetTropicsManagementAuthorityandBiotropicaAustraliaPty.Ltd.Cairns.FrontCoverRainorestruitPhotoWetTropicsImagesfoweroNaucleaorientalisPhotoCampbellClarkelandscapecorridorPhotoLarsKazmeiercommunitytreeplantingPhotoCampbellClarkeMacarangaleaandfowerPhotoCampbellClarke.BackCoverPhotoKerryTrapnellThispublicationisdedicatedtoGeoTraceyPeterStantonJoanWrightandTonyIrvine.AcknowledgementsWewouldliketothankProBillLauranceorcontributingtheorewordandDrSusanLauranceandCampbellClarkeorreviewingthedrat.WearegrateultoMikeStottwhoassistedwithpreparationothemapsandRobertKochorthecoverdesign.DiagramsbyRossRobinsonCreative.WethankMichaelCorleyGemmaHornerDanKeaneandJamesHillorassistancewithspecieslistsandbackgroundresearch.WewouldliketoparticularlyacknowledgeCampbellClarkeDanMetcaleMikeTrenerryMartinCohenDarynStorchDebPopleKrisKupschLarsKazmeierBiotropicaAustraliaPtyLtd.EPATourismQueenslandandtheWetTropicsManagementAuthoritywhokindlyalloweduseotheirphotographs.ThankstotheamazinglydedicatedenthusiasticandknowledgeablemembersoTREATandotherrainorestrestorationpractitionerswhokindlysharedtheirpassionexperienceinsightsandideas.ThisprojectissupportedbytheWetTropicsManagementAuthoritythroughundingromtheAustralianGovernmentsCaringorourCountryandBiotropicaAustraliaPtyLtd.RepairingTheRainorestwasproudlyprintedinNorthQueenslandbyBoltonPrintunderISO14001EnvironmentalCertifcation.Thecoverwasprintedona55RecycledmixedsourcestockwiththetextpagesprintedonanAustralianmade50RecycledandCertifedCarbonNeutralstock. AbouttheauthorsSteveGoosemhasabackgroundinprotectedareamanagementandinbotanicalsoilandwildlieecologicalresearch.Hisfrstexperiencewithrainorestrestorationinvolvedoodmitigationtreeplantingsintheatermathothedevastating1974Brisbaneoods.StevegainedhisPhDinecologyandbotanyromtheUniversityoQueenslandintheearly1980sstudyingthedynamicsonitrogeninrainorestsoilsandplantsduringsuccessionaldevelopment.PriortothisSteveundertookpostgraduatestudiesintotheeasibilityoutilisingrainorestsortreatingsewageeuentandwasamemberoascientifcexpeditiontoPNGundertakingrainorestcanopyresearch.FollowingafveyearstintasaPostDoctoralResearchFellowattheUniversityoNewEnglandStevearrivedinNorthQueenslandin1987asaresearchscientistortheQueenslandNationalParksandWildlieServicewherehemetNigelTuckerandwhichledtoseveralcollaborativerainorestrestorationprojectsandmanystimulatingdiscussions.SteveiscurrentlyPrincipalScientistwiththeWetTropicsManagementAuthoritybasedinCairnsinNorthQueenslandandisalsoanAdjunctPrincipalResearchFellowintheSchooloMarineandTropicalBiologyatJamesCookUniversity.NigelTuckerhasbeenactiveintherestorationandmanagementotheWetTropicssince1984workingfrstlywithecologistJ.GeoTraceyatCSIRObeorejoiningtheQueenslandNationalParksandWildlieServiceandbeingguidedbythebiogeographerJ.PeterStanton.Hisreedomtoexploretheecologicalrestorationprocessallowedhimtogainexperienceacrossawiderangeotropicalecosystemsatatimewhenknowledgeotheprocesswasinitsinancy.NigelworkedwiththecommunitygroupTREATTreesortheEvelynandAthertonTablelandsIncandlandholdersacrossnorthQueenslandtobetterunderstandrestorationworkingromtheLakeEachamNursery.HegraduatedromtheUniversityoQueenslandin1996andcompletedhisMScatJamesCookUniversityin2000.TheevolvingrelationshipbetweenrestorationecologyandconservationbiologyledtohisongoingresearchandpublicationassociationwithSteveGoosembeginningin1989.NigelestablishedtheenvironmentalconsultingcompanyBiotropicaAustraliaPLin2002andsincethattimehasbeenactiveinorestrestorationprojectsinsouth-eastAsiaPapuaNewGuineaandtropicalAustralia.HeservesasaBoardmemberotheSocietyorEcologicalRestorationAustralasiaandthejournalEcologicalManagementandRestorationandisanAdjunctLecturerwithJamesCookUniversitysSchooloMarineandTropicalBiology.DISCLAIMERTheviewsandopinionsexpressedinthispublicationarethoseotheauthorsanddonotnecessarilyreectthoseotheQueenslandGovernmentortheWetTropicsManagementAuthority.www.biotropica.com.auwww.wettropics.gov.au 4RepairingtheRainforestInthehundredmillionyearssincerainorestsfrstappearedonEarththeyhavesurvivedmanychallenges.Butewenvironmentalinsultscomparetothemodernmaladiesoboomingpopulationgrowthrisingoverconsumptionandrapidlychangingclimates.Acrossthetropicsorestsareallingatanalarmingpaceataroundortyootballfeldsaminuteoverthelastdecade.Astherainorestsdeclinesotoodotheirremarkablebiodiversityandinvaluableecosystemservicessuchasrecyclingrainallstoringheat-trappingcarbonandlimitingdestructiveooding.Rainorestsarenotmerelydisappearinghowevertheyarealsobeingshreddedloggedminedandoverhunted.Vastexpansesoold-growthorestarebeingtransormedintobyhuman-dominatedlandscapeswhereremnantragmentsorainorestareencircledbyarmsurbansprawlexotictreeplantationsandselectivelyloggedorests.Toagreatextenttheateobiodiversitywilldependonthecapacityosuchwoundedlandscapestosustainorest-dependentspecies.Giventhemountingchallengestotropicalenvironmentstheimportanceoecologicalrestorationisabundantlyclear.Replantingrestoringandrepairingrainorestsoersopportunitiestostaunchpastecologicalinjuriesespeciallyorhigh-priorityareaswherebiodiversityoncethrivedandmuchdamagehasalreadybeendone.Thosewhorestorerainorestscanlimitandevenreversethedeclinesowildlieandecosystemservicesbyestablishingnewaunalcorridorscreatingprotectivebuersaroundparksandrestoringkeyecologicalunctionsoorests.ForthoseinterestedinenvironmentalrestorationRepairingtheRainforestnowinitssecondeditionisaninvaluableandtimelysynthesis.ItsauthorsStephenGoosemandNigelTuckerarehighlyrespectedecologistsandrestorationexpertswhocollectivelyhaveaccumulatedmorethansevendecadesoexperienceinthetheoryandpracticeorestoringrainorestsandotherdamagedecosystems.FocusingprimarilyontheWetTropicsregionoAustraliaRepairingtheRainforesthighlightskeyecologicalprinciplesorrestoringrainorestbiodiversityandunctioning.Theseincludeamongothersthevitalroleoanimalseed-dispersersinrainorestsandthetraitsoplantsthathelporhindertheirdispersal.Alsohighlightedaretheimportanceounderstandingsuccessionaltrajectoriestoaccelerateorestrecoveryandprinciplesolandscapeecologyoroptimizingtree-plantinginvestments.RepairingtheRainforestcoversarmorethantheoryhoweveritisalsoaninvaluableprimerohard-wonpracticalmethodsoractuallygrowingandrestoringrainorests.TheseincludespecieslistsorainorestplantsthatarebestsuitedordieringenvironmentalconditionsintheWetTropicsregionandtried-and-testedstrategiesoreectivelypropagatingseedlingsinnurseries.Aparticularlyinspiredstrategytheauthorsdetailistoplantcertaintreespeciesthatattractkeyseed-dispersinganimalsthatinturnbringinmoreplantspeciessuperchargingorestrecoverybothorplantcommunitiesandnativeauna.WhileitemphasizestheAustralianWetTropicstheprinciplesembodiedinRepairingtheRainforestapplytovirtuallyanytropicalorestenvironment.ItisaninvaluabletoolorthosewhowishtorestoreandreplenishrainorestsandIheartilycongratulatetheauthorsorproducingsuchaneminentlyuseulandimportantwork.WilliamF.LauranceDistinguishedResearchProessorAustralianLaureateJamesCookUniversityCairnsAustraliaPrinceBernhardChairinInternationalNatureConservationUtrechtUniversityNetherlandsFOREWORD RepairingtheRainforest5CONTENTS1.Introduction7-WhatisecologicalrestorationPART1.THEORY2.Australianrainforests103.QueenslandsWetTropics12-Biologicaldiversity4.Whatarerainforests16-Rainoresttypes5.Ecosystemecology22-Stateactors-Interactiveactors6.Theroleofcanopygapsinrainforestregeneration25andsuccession7.Plantsuccession28-Whatisecologicalsuccession-Keysuccessionalprocessesollowingdisturbance-Breakdownsinthesuccessionalprocess8.Lifehistorystrategies319.Modelsofdynamicchange3810.Dispersal41-Pollendispersal-Seeddispersal11.Phenology53-Theseasonalrhythmofowering-Theseasonalrhythmoruitripening-Keystoneplantresources12.Landscapeecology56-Landscaperesilience-Landscapeconnectivity-Ripariancorridorsandconnectivity-Fragmentationandedgeeects13.Generalrestorationprinciplesderivedfromthetheory63 6RepairingtheRainforestPART2.PRACTICE14.Ecologicalrestoration70-Whyrestore15.Planning73-Siteanalysis16.RestorationMethods76-Naturalregeneration-Frameworkspeciesmethod-Maximumdiversitymethod-Sealingmargins-Riparianrestoration17.Weeds9218.Preparingthesite94-Ecologicalfurniture-Planting-Maintenance19.Growingyourownplants9820.Wheretofromhere99PART3.WHATTOPLANTWHERE21.Speciessuitableforriparianplantings10122.Speciessuitablefordifferentenvironmentalconditions103-Frameworkspecies-MaximumdiversityREFERENCES133APPENDIX1146KeytotherainforesttypesoftheWetTropics RepairingtheRainforest7Itisinstructivetosetthesceneorthisbookonrainorestrestorationbyfrsttakingstockotheextentohumaninuenceontheearthsrainorestecosystemsandtheconsequencesotheseimpactsorbiodiversityandtheprovisionoecosystemgoodsandservices.Ecosystemgoodsandservicesprovideawiderangeobeneftsorsociety.Themostimportantotheseservicesarethosewhichareessentialorlieandthosewhichpreventlimitminimiseorcorrectenvironmentaldamagetowaterairandsoil.Thereisalsoagrowingrecognitionotheimportancetosocietythatecosystemgoodsandservicesprovideorthehealthsocialeconomicculturalspiritualeducationalrecreationalormedicinalneedsohumansocieties.TropicalrainorestsoccurinourmainregionsCentralandwestAfricaCentralandsouthAmericaSoutheastAsiaNortheastAustralia.Tropicalrainorestsarehometomorethanhalotheearthsterrestrialspecieswithinjustsevenpercentotheearthslandsurace.TheyalsostoremorethanathirdotheearthsterrestrialcarbonandareresponsibleorathirdotheearthsterrestrialnetprimaryproductivityWright2010SchnitzerBongers2011.Eortstoimprovehumanwelareandtogeneratewealthhaveresultedinthedomesticationandexplotationomuchotheearthsrainorestedlandscapes.AsaconsequenceitisnowacceptedthatourplanetiscurrentlyacingitssixthmajorextinctioncrisisduetothecumulativewidespreadlossobothhabitatsandspeciesBarnoskyetal2011.Thecurrentmassiveextinctioncrisisisthefrstor65millionyearsWilson2002andisthefrstthatcanbeattributedtothesnowballingeectsohumanactions.SincerainorestsarethemajorstorehouseotheplanetsterrestrialbiodiversityitisnotsurprisingthattheirrapidandcontinuinglossandthecurrenttropicalbiodiversityextinctioncrisisLaurance1999PimmRaven2000isamatterointernationalconcern.Atamorelocalscalethelossorainorestsandtheirdecliningconditionhasresultedinenvironmentallyandaestheticallyimpoverishedlandscapes.TheenormityorecentrainorestdeorestationcanbeappreciatedwhenonerealisesthathalotheworldstropicalrainorestshavedisappearedsinceWorldWarII.Despiteincreasedawarenessotheimportanceotropicalrainoreststheirlossisstilloccurringatanalarmingratewith10millionhectaresbeinglosteachyearwhichLaurance2011hasdescribedasbeingtheequivalento40ootballfeldseveryminute.Muchothisdestroyedrainorestisattributabletotheillegalloggingtradeortheconversionoentirelandscapestooilpalmmonocultures.InLatinAmericaandinAsiathelossorainorestisoccurringatarateapproachingtwopercentperyearwhileinAricathepaceisjustunderonepercentperyearLaurance2011.Associatedwiththislarge-scalelossotheearthsrainoreststheLivingPlanetIndexwhichisproducedbytheWorldWideFundorNatureandtheZoologicalSocietyoLondonWWF2012oundthatina48yearperiodbetween1970and2008therewasa44percentlossinterrestrialspeciesabundanceinthetropics.Theyoundthatwildliepopulationsandspeciesabundanceinthetropicsaredecliningduetoanumberolarge-scalehumanimpactsincludingongoingdeorestationhabitatdegradationpollutionagricultureinvasivespeciesdiseaseclimatechangedamsminingandotherindustrialprojects.WildliepopulationsintropicalAricawereoundtohavedroppedby38percentbyhalintheNeotropicalregionCentralandSouthAmericaandby64percentintheIndo-PacifcregionincludingIndiaSoutheastAsiaAustraliaandPacifcIslandsWWF2012.1.INTRODUCTION 8RepairingtheRainforestInthelightothesepressuresontheEarthsrainorestsitisimperativethatwenotonlyconserveremainingtractsorainorestbutalsowhereverpossibleattempttorestoreandrebuildproductiverainorestecosystems.Worldwideincreasingattentionisbeinggiventotheneedorecosystemrestorationtore-establishbothecosystemunctioningandtheprovisionoecosystemservicesSCBD2010TEEB2010.TheEconomicsoEcosystemsandBiodiversityTEEBciteecologicalrestorationasthetoppriorityorglobalsocietyTEEB2011.Clearlytheroleorainorestsasbothsanctuariesobiodiversityandasprovidersoecosystemservicescannotbeoverestimated.Aswithanytextonrainorestecologyandrestorationitisinevitablethatknowledgedevelopsprocesseschangeandtechnologyadvances.InthissecondeditionoRepairingtheRainforestweaimtostrengthenthetiesbetweenecologicaltheoryandrestorationpracticeonthebasisthatrestorationisundamentallythemanagementoecologicalprocesses.Forrestorationtosucceedandilandscapesaretoberecoveredthentheirsuccesswillimprovewhereecologicalprinciplesareemployed.Thepracticeorainorestrestorationisthelitmustestohowwellweunderstandnotonlyhowrainorestecosystemsareassembledandheldtogetherbutalsohowtheychangeanddevelopovertime.Althoughitisbeyondourcapacitytorestoreatrulynaturalrainorestecosystemwecanassistnaturebybringingtogetherandattractingthebasiccomponentsandcharacteristicplantsandanimalsoanarea.Assistedbythiskick-startnaturalprocesseswilltakeoverandothercomponentsothenaturalsystemwillnaturallyinvadetherestoredsystem.AlthoughwegivespecialattentiontotherainorestsoAustraliasWetTropicsithasbecomeincreasinglyclearsincethepublicationothefrsteditionoRepairingtheRainforestin1995thatthegeneralconceptsandpracticesoutlinedinthefrsteditionarewidelyapplicableElliottetal2006.TheollowingquoteromaspeechtothegeneralassemblyotheInternationalUnionorConservationoNaturein1968bytheSenegaleseenvironmentalistBabaDioumconciselysumsuptheaimothisbookIntheendwewillconserveonlywhatwelovewewillloveonlywhatweunderstandandwewillunderstandonlywhatwearetaught.Appreciationthroughknowledgeallowspeopletobetterunderstandrespectandcherishtheextraordinarybiologicalrichnesscomplexityandnaturalbeautythataretheworldsrainorestsandtorecognisetheimportanceotheirconservationandrestoration.WHATISECOLOGICALRESTORATIONInattemptingtorestorerainorestecosystemsweneedtoaskthequestionWhatwouldnaturedoInthenaturalworldecosystemsarebalancedefcientresilientandresponsive.InadierentcontextbutequallyrelevanttoecologicalrestorationBenyus1997proposedtenprimaryprinciplesonaturalsustainability1.Naturerunsonsunlight.2.Natureusesonlytheenergyitneeds.3.Natureftsormtounction.4.Naturerecycleseverything.5.Naturerewardscooperation.6.Naturebanksondiversity.7.Naturedemandslocalexpertise.8.Naturecurbsexcessesromwithin.9.Naturetapsthepowerolimits.10.Natureisbeautiul. RepairingtheRainforest9Placingthesetenprinciplesintoanecologicalrestorationcontextwecouldinerthatanecosystemrunsonsunlightandusesonlytheenergyitneeds.Itftsormtounctionandastablesystemrecycleseverything.Inanaturalecosystemcooperationanddiversityarerewardedwhichdemandslocalspecialisationandinterconnectedwebsointeractions.Astableecosystemcurbsexcessesromwithinandtapsthepowerolimitschoosingtooptimiseratherthanmaximise.Andfnallynatureisinherentlybeautiul.EcologicalrestorationismuchmorethanplantingtreesitistheprocessoassistingtherecoveryoanecosystemthathasbeendegradeddamagedordestroyedSER2004.ItisaprocessthatinitiatesoracceleratesrecoveryoanecosystemwithrespecttoitsstructurespeciescompositionabioticrequirementsandphysiognomyunctionalpropertiesproductivityenergyownutrientcyclingandexchangeswithsurroundinglandscapesSER2004SCBD2011.Ecologicalrestorationaimstore-establishaunctionalecosystemwithalevelospeciesdiversityandspeciesinteractionstypicaloitsgeographicgeologicalandclimaticsetting.Themostundamentalrestorationgoalthereoreistorecoverspeciescompositionandstructureandtoreturndamagedecosystemstosomesetoconditionsconsideredunctionalsustainableandnatural.Ecologicalrestorationaectsthelandscapeinavarietyowaysitcanhelpmaintainadiversityoplantsandanimalsinanareacreatelowermaintenancelandscapesimprovewaterqualityhelpminimisesoilerosioncreateahealthiersustainablemosaicolanduseshelpmaintainthegenepooloparticularplantandanimalspeciespromotinghardinessdiseaseresistanceandadaptabilitycreatepositiveprogressiveandconstructiveattitudesaboutournaturalenvironment.Ecologyisthestudyohoworganismsinteractwitheachotherandwiththeirenvironment.Itisthereoreuseultohavesomebasicknowledgeoecologyiyouwishtobetterunderstandrainorestrestorationandtoperhapschangethewayyoulookatandappreciatethelandscape.Thefrstpartothisbookprovidesacompactintroductiontosomeundamentalconceptsoecologyrelevanttothescienceandpracticeorainorestrestorationwithoutgoingintodetailedliteraturereviewsortechnicaldetail.Thesecondpartappliestheseconceptstothepracticeorainorestrestorationwhilethefnalsectionprovideslistsorainorestplantspeciesthataresuitableorplantingunderdierentenvironmentalconditions.Ecologicalrestorationisbothaknowledgeandpractice-basedundertakingthatusesscienceandotherormsoknowledgealongwithlessonslearnedrompracticalexperience.Thisbookisdesignedtoprovokeideasowaysandapproachesorestoringrainorestedlandscapesbaseduponsomebasictheoreticalconceptsitisnotmeanttobeprescriptive.Theprocessoecologicalscienceiscreativeandexible.Thereisnosinglerestorationmethodusedbyallpractitioners.Similarlythereisnosinglescientifcmethodortheoryusedoracceptedbyallscientists.Ratherbothecologistsandrestorationpractitionersuseavarietyotoolsknowledgeandtechniquestobothtesttheirhypothesesaboutthenaturalworldandtorefneandimprovetheirunderstanding.AsCarlSagan1997observedScienceisawayofthinkingmuchmorethanitisabodyofknowledge. 10RepairingtheRainforestDelightitselhoweverisaweaktermtoexpresstheeelingsoanaturalistwhoorthersttimehaswanderedbyhimselinaBrazilianrainorest.Theeleganceothegrassesthenoveltyotheparasiticalplantsthebeautyothefowerstheglossygreenotheoliagebutaboveallthegeneralluxurianceothevegetationlledmewithadmiration.CharlesDarwin29February1832.2.AUSTRALIANRAINFORESTSOnlyabouttwentypercentotheAustraliancontinentiscoveredbynativeorestowhichjustundertwopercentorthreemillionhectaresisrainorestStorketal2008.InAustraliarainorestcommunitiesmainlyoccurinanarrowarcalongtheeastcoastromCapeYorkPeninsulainthenortherntropicstothecooltemperaterainorestsoTasmaniainthesouthandusuallywithin100kilometresothecoast-lineinareasreceivingmorethan1200millimetresoannualrainallStorketal2011.ThelargestareaoremainingrainorestinAustraliaislocatedinQueenslandsWetTropicsregionTable1.SmallrainorestoutlierscanalsobeoundscatteredalongthenortherntropicalcoastsotheNorthernTerri-toryandWesternAustraliaandinmoistfre-proogorgesandotherspecialisedmoistenvironmentswithinthemorearidpartsotropicalandsubtropicalAustraliaStorketal2011.Table1.DistributionorainorestinAustraliakm2PART1.THEORYAreakm2ProportionContinentAustralia30231100StatesandTerritoriesVictoria4071.3WesternAustralia160.1NewSouthWales22187.3NorthernTerritory9773.2Tasmania705523.3Queensland1955864.7RegionWetTropics834027.6MassivechangeshavebeenwroughtontheAustralianlandscapeinthetwocenturiessinceEuropeansettlementincludingtheclearingoabout13000km2oAustraliasrainorestsNationalLandandWaterResourcesAudit2001.HistoricallyrainorestswereamongtheearliestAustralianvegetationcommunitiestobeexploitedortimberandagriculture.Alegacyothepatternothispastexploitationisthatmostotheremaininglargerblocksorainorestarenowconfnedtosteeporruggedterrains.ExamplesoextensivepastrainorestclearingincludethedecimationotheBigScrubrainorestsinnorthernNewSouthWalesFloyd1987theIllawarrarainoreststhehooppinescrubsosouth-eastQueenslandYoungMcDonald1987therainorestsotheAthertonandEungellaTablelandsthecoastaloodplainrainorestsotheDaintreeMossmanBarronJohnstoneTullyMurrayHerbertPros-erpineandPioneerriversinnorth-eastQueenslandandextensiveareasoBrigalowBeltvinethicketsinQueenslandandNewSouthWalesSattlerWilliams1999Storketal2011.SourceNationalLandWaterResourcesAudit2001Storketal2008Storketal2011. RepairingtheRainforest11Thebroadrangeoecologicalcommunitytypesclassifedundertheumbrellatermrainorestmasksthelevelodepletionosomerainoresttypes.IntheWetTropicsorexamplethesteepescarpmentandruggedhighlandrainorestcommunitiesremainlargelyintactwhereasthecoastallowlandanduplandtablelandrainorestcommunitiesonertilealluvialandbasaltderivedsoilshavebeenseverelydepletedStorketal2011andnowremainasscatteredragments.AlthoughAustralianrainorestsareverylimitedinextenttheyneverthelesscontainalargeproportionothecountrysbiodiversitycapital.Duringthe1980ssubstantialadvancesweremadetowardstheconservationoAustraliasremainingrainorests.InrecentdecadestherehasbeenalargecommunitydrivenexpansionorainorestrestorationprojectsinAustralia.Theseprojectshavebeeninitiatedormanydierentreasonsincludingimprovementsinbiodiversityhabitatandcorridorsoriconicwildliespeciescatchmentmanagementstreamandriparianhealthwaterrunofltrationhealthoreshwaterandmarineecosystemserosioncontrollandscapeaestheticsnoiseandlightbarrierswindbreakslandscaperepairollowingconstructionandmaintenanceocommunityinrastructuresuchasroadspowerlinesandpipelines. 12RepairingtheRainforest3.QUEENSLANDSWETTROPICSTheWetTropicsoQueenslandisessentiallyalongnarrowmountainousbiogeographicregionwithanarrowcoastalplain.Theregionislargelydelineatedonthebasisotheclimaticlimitstothedistributionorainorestcommunities.TheWetTropicsisthewettestregioninAustraliaTurtonetal1999andincomparisonwithothertropicalrainorestareasintheworldthewetterpartslieatthewettoextremelywetendothehydrologicalspectrumTurtonetal1999.Theregionshighrainallanddiverseruggedterrainhasallowedawiderangeoorestedecosystemsthatvaryenormouslyinstructurephysiognomyandcompositiontoourish.TherainorestsotheWetTropicsareoneotheearthsextraordinarytreasures.Recognitionotheglobalsignifcanceotheregionsorestsoccurredin1988when900000hectaresoorestedlandscapesbetweenTownsvilleandCooktownweredeclaredWorldHeritage.ThedeclarationwasmadeonthebasisoallourWorldHeritagenaturalareacriteria.BIOLOGICALDIVERSITYAustraliaisrecognisedbytheWorldConservationMonitoringCentreasoneotheworlds17mega-diversecountrieswhichcollectivelyharbour75percentotheearthstotalbiologicaldiversityWilliamsetal2001.QueenslandsWetTropicshasbeenrecognisedinitsownrightasamega-diverseregionbeingrepresentedonTheGlobal200listOlsonetal2000-acollectionotheearths200mostoutstandingimportantanddiverseterrestrialreshwaterandmarinehabitats.AlthoughQueenslandsWetTropicsmayonlyoccupy0.26percentothelandsuraceoAustraliaitcontainsadisproportionatelylargeshareoitsbiodiversityStorketal2011.LifeFormofAustraliasTotalVascularplants18Ferns65Cycads21Coniers37Orchids30Mammals36Marsupials30Bats58Rodents25Birds50Frogs25Reptiles23Freshwaterfsh37Butteries60MetcaleandFord2009calculatethatwithinanareao20000km2theoraotheWetTropicsbothrainorestandnon-rainorestcomprisessome4035speciesin1369genera.ThiscomparesavourablywiththatoNewCaledonia2422speciesinanareao19000km2andCostaRica5250speciesinanareao51000km2.TheWetTropicsissecondonlytoNewCaledoniainthenumberoendemicgeneraconservedperunitarea.TherainorestsotheWetTropicshavemoreplanttaxawithprimitivecharacteristicsthananyotherareaonearth.Modernphylogenetictaxonomyhassubstantiallyrevisedourunderstandingowhich RepairingtheRainforest13amiliesareoldandwhichamiliesaremuchyoungerbutmayretainprimitiveeatures.BasedonamodernphylogenyMetcaleandFord2009calculatethatothe28near-basalangiospermlineages16arerepresentedintherainorestsotheWetTropicsTable2.ThisisasimilarlevelorepresentationoundortheorasoNewCaledoniaandCostaRica.HowevertwoprimitiveamiliesAustrobaileyaceaeandIdiospermaceaeareendemictotheWetTropicsIdiospermaceaeisconsideredbysomeauthoritiesasbeingsynonymouswiththeamilyCalycanthaceae.Photo1.TheprimitiveUvariaconcavaisarobustlowlandrainorestclimbingvinewhichproduceslargeshowydarkredfowers4-5cmdiameter.Notetheleatherynatureothepetals.PhotoD.J.Metcale.Thislargenumberoangiospermamilieswithprimitivecharacteristicsareagreatrepositoryoevolutionaryhistory.TherainorestsotheWetTropicsNewCaledoniaandNewGuineashareEastGondwananoriginssignifcantplanttaxawithprimitivecharacteristicsintheirorasandtheirhighlevelsoregionalendemism.Thissuggeststhepersistenceorainorestsintheregionovermillionsoyearsandtheirlongisolationromdevelopingorasinotherpartsothetropics.Photo2.IdiospermumaustralienseidiotruitribbonwoodorIdiospermumisaWetTropicsendemicprimitiveangiospermwhichisrestrictedtoverywetlowlandrainorestsbetweenHutchinsonCreekandtheDaintreeRiverandtoasmallareaotheHarveyCreeksectionontheBellendenKerRange.PhotoWetTropicsImages. 14RepairingtheRainforestDiversityandregionalendemismwithinthefaunaoftheWetTropicsarealsoveryhighwith107mammalspeciesincluding11endemicspeciesandtwomonotypicendemicgenerafoundintheregion.Thereare368birdspeciesofwhich11speciesareendemic.Therearealso113reptilespeciesofwhich24speciesareendemicthethreeendemicreptilegeneraareeachrepresentedbyonlyasinglespecies.Thediversityofamphibiansincludes51speciesofwhich22areendemicspeciesWilliams2006Storketal2011.Itneedstobeemphasisedthatthediversityofarainforestisfarmorethanlistsofplantandanimalspeciesthatarefoundthereandalsoincludesconsiderationofthecomplexinteractionssuchasfoodwebsdispersalsystemsandmutualinterdependencies.Table2.The16familiesand46generaofprimitivedicotsintheWetTropics.NumbersinparenthesesrefertothenumberofWetTropicsspeciesrepresentedperfamilyorgeneraafterMetcalfeFord2009FamilyGenera1.Annonaceae301.Cananga12.Desmos23.Fitzalania14.Goniothalamus15.Haplostichanthus56.Meiogyne37.Melodorum48.Miliusa29.Polyalthia410.Pseuduvaria511.Uvaria112.Xylopia12.Aristolochiaceae61.Aristolochia22.Pararistolochia43.Atherospermataceae31.Daphnandra12.Doryphora13.Dryadodaphne14.Austrobaileyaceae11.Austrobaileya15.Cabombaceae11.Brasenia16.Ceratophyllaceae11.Ceratophyllum17.Eupomatiaceae21.Eupomatia28.Hernandiaceae21.Hernandia29.Himantandraceae11.Galbulimima1FamilyGenera10.Idiospermaceae11.Idiospermum111.Lauraceae821.Beilschmiedia92.Cassytha13.Cinnamomum44.Cryptocarya285.Endiandra296.Lindera17.Litsea88.Neolitsea212.Monimiaceae231.Austromatthaea12.Endressia13.Hemmantia14.Hedycarya15.Levieria16.Palmeria27.Steganthera68.Wilkiea1013.Myristicaceae21.Myristica214.Nymphaeaceae21.Nymphaea215.Piperaceae141.Peperomia52.Piper916.Winteraceae71.Bubbia42.Tasmannia3 RepairingtheRainforest15Photo3.PseuduvariahylandiiisaprimitivesmalltreerestrictedtoasmallareaintheuppercatchmentsotheMulgraveandRussellRivers.Itisusuallyconfnedtowetverywelldevelopedrainorestonbasaltsoils.PhotoD.J.Metcale. 16RepairingtheRainforest4.WHATARERAINFORESTSRainorestisanumbrellatermdescribingabroadrangeovegetationcommunitytypes.Rainorestshavebeensimplydefnedastree-dominatedwater-lovingecosystemsthatoccurinthenon-seasonaltropicsHillandHill2001withavegetationcoverogreaterthan80percentSpecht1970.Characterisingrainorestsinsuchsimpletermsailstoprovideanyideaothebasicpropertiesthatdistinguishrainorestsromothervegetationtypes.FloristicallyAustralianrainorestsarealmostcompletelyunrelatedtoadjacentsclerophyllvegetationcommunitiesAdam1992.Ingeneralrainorestsaremoisturelovingcommunitiesocloselyspacedtreeswithhighoristicdiversity.Theyaredistinguishedbytheprominenceocharacteristiclie-ormssuchasepiphyteslianasandstranglersrootandstemstructuressuchasbuttresses.Annualherbsorgrassesareabsentontheorestoor.Itisalsoageneralcharacteristicotropicalrainoreststhatatanylocalitythenumberospeciesisverylargeandtherequencyoalmostallothemisverylow.Diversitycoupledwithrelativerarityisthehallmarkomosttropicalrainorests.Itisthediversityolie-ormsandthestructuralcomplexitiesthatarethekeyeaturesdistinguishingrainorestsromothervegetationtypeswhiletheundamentalcharacteristicorainoreststhatmakesallthespeciallie-ormsthatareuniquetorainorestspossibleistheclosedcanopyanditseectsonlightqualityandquantityandmicroclimate.Anotherconsequenceotheclosedcanopywhichcharacterisesarainorestisthatmanyrainorestseedlingsmustbetolerantothelowlightconditionsencounteredontheorestooritheyaretosurviveorbecompetitive.Manyrainorestunderstoreyspeciesareabletoopentheirstomatesandrespondrapidlytoveryshortpulsesoincreasesinlightresultingromsmallcanopygapsandsunecks.AttheooroatypicalWetTropicsrainorestaverageradiationlevelsmaybeaslowas0.5-0.2percentotheradiationinterceptedbythecanopyYatesetal1988.Manyseedlingsontheorestoorexperiencetheselowlevelsoradiationordaysorweeksatatimeandareexposedonlyverybrieyorperhapsseasonallyitherearedeciduouscanopyspeciesnearbytohighlevelsoradiation.Theoccurrenceosunecksappearscriticaltothesurvivalomanyplantsoundontheorestoor.BjorkmanandLudlow1972oundthatotheradiationreachingtheorestoorinasouthernQueenslandrainorest62percentoccurredinsuneckswhichonlyoccurredduringaewminutesotheday.Turton1988reportssimilarfguresorrainorestsgrowingontheAthertonTablelandintheWetTropicswhereattheequinoxsuneckscontributed60.9percentand50.8percentoorestoorradiationunderaclosedcanopyandinasmallgaprespectively.Consequentlyleavesoanindividualunderstoreyrainorestplantmayexperienceuctuatingaveragemaximumradiationlevelsdieringbyaactoro100to200timesYatesetal1988.Photo4.Sunfecksareimportantinsustainingthedenseunderstoreygrowinginthissmallrainorestgap.PhotoCampbellClarke. RepairingtheRainforest17Rainallamountandseasonalityarethekeydriversdeterminingthedistributionorainorests.Secondarydriversodistributionincludesoiltypeandtopographytemperatureanddisturbanceregime.Theseactorsdeterminestructuralcomplexityandormationtypewiththemoststructurallycomplexandbiologicallydiverserainoresttypesoccurringondeepertilesoilsinhighrainallzones.Themoreseasonaltheenvironmentorthemorestressultheenvironmentorinstancepoorlydrainedinertileshallowsoilsthemorestructurallysimpleandlowerthediversityorainorestcommunitytypes.Themorecomplexrainoresttypesareusuallyassociatedwithahigherdiversityobothplantsandanimals.Itiscommoninthebetterdevelopedrainorestsortallemergenttreestotowerabovethemainclosedcanopy.Belowthescatteredemergenttreecanopiesisanuppercanopywhichormsthemainlightinterceptinglayeroleavesandiscomposedoalargevarietyomaturetreespecies.Thecanopyiswheremostotheenergyromsunlightiscapturedandisthemajororestlayerthatpowersthewholerainorestecosystem.Belowthisuppercanopyisamid-canopylayerosuppressedlightdemandingspeciesandshade-toleranttreeswaitingoranuppercanopygaptoeventuallyoccursothattheycanexploittheincreasedlightandfllthegap.Belowtheselayersisotenarichhighdensityunderstoreyosuppressedtreeseedlingssaplingsshrubsernsandherbs.Wettropicalrainorestsalsosupportalargebiomassoepiphytesandlianasandahugevarietyodierentlie-orms.Thethreedimensionalstructuralcomplexityoarainorestprovidesawideassortmentonichesthatsupportahighdiversityoaunalspecieswithdierentgroupsoanimaloccupyingandexploitingdierentcanopylayers.RAINFORESTTYPESClassiyingrainorestcommunitieshasbeenapproachedinmanydierentwaysdependinguponthepurposeAdam1992.Broadlyspeakingtherearethreedierentapproachestoclassiyingregionalvegetationtheoristicassociationapproachthebroadhabitatapproachorexampleriparianlittoralandmontaneortheecologicalrameworkapproach.Forecologicalrestorationplanningpurposesandorunderstandingtheunderlyingvegetationpatterninanareaitisarguedthattheecologicalrameworkapproachismoregenerallyuseul.Rainorestsparticularlywettropicalrainorestshavegenerallydefedoristiccomposition-basedclassifcationattemptsbecauseanyclassifcationbasedonspeciesbecomesextremelyunwieldyhugelycomplexandarbitraryduetothelargediversityandhighlyvariablenatureorainorestcommunities.Hundredsotreespeciescoexistinmosttropicalrainorestswiththeresultthatmostrainorestcommunitiescannotbeconsideredtobehighlyorganisedoristicunits.Ingeneralrainorestcommunitiescanbeviewedasbeingcomposedotemporaryortuitousco-occurrencesoplanttaxaratherthanstablerecurringoristiccommunities.Theactualspeciespresentatanytimecanbeviewedastransitoryoccupantsoasitewithsel-replacementollowingdeathanimprobableoccurrence.Inotherwordsrainorestspeciesareoundtogetherduetochanceandthereisgenerallynorecurringrelationshipbetweenspecies-theyareonlyoundtogetherbecausetheyarepartoapoolospecieswhichhavesimilarenvironmentalrequirements.Dierentenvironmentshavedierencesintheirpotentialpoolospecies.Dierentpoolsospeciesareadaptedtodierentcombinationoenvironmentalconditions.Inordertodealwiththesespecies-basedlimitationsWebb19591968developedamethodoclassiyingrainorestsbaseduponeasilyrecognisableeaturesoarainorestcommunityasawhole.WebbsstructuralclassifcationwasurtherdevelopedusingmathematicalmodellingtechniquesinaseriesopapersbyWebbTraceyWilliamsandLancee.g.196719701976producingamore 18RepairingtheRainforestrefnedclassifcationbaseduponareducedlistosignifcanteaturesWebb1978.Webbsrainorestclassifcationsystemisbasedonstructuraleaturessuchastreelayersevennessocanopyoutlinecrowndepthsandshapesphysiognomiceaturesincludingleasizetypeanddeciduousnesscolourandtextureobarkandbuttressingandspeciallieormssuchasvinespalmsernsmossesandepiphytes.Webbsclassifcationrecognisesthatdierentcombinationsostructuraleaturescharacterisedierenttypesoenvironments.Singleeaturesandlie-ormsmaybeoundinmorethanoneenvironmentaltype.LeasizeisaverydiagnosticeatureinWebbsrainorestclassifcationsystem.Webbnotedthattherearealargenumberodiagnosticeaturesthatarelinkedwithchangesinleasizeandthatdierentcombinationsothemcanbecorrelatedwithenvironmentalgradients.Adecreaseintheavailabilityomoistureandincreasedperiodsoseasonaldroughtiscorrelatednotonlywithanoveralldecreaseinleasizebutalsoanincreaseindeciduousnessareductionincanopyheightalossoplankbuttressinganincreaseintheprevalenceinakyandscalybarksanincreaseinthornsandpricklesandincreasesinshrub-likelieorms.Thesizeoleavesomostspeciesinthecanopyoarainorestwasalsooundtodecreaseathigheraltitudesandhigherlatitudesandonsoilsolowermoistureandnutrientstatus.ThevegetationotheWetTropicshasrecentlybeenremappedandreinterpretedbyPeterandDavidStantonandhierarchicallyreclassifedanddigitisedbytheWetTropicsManagementAuthority.Thisrecentmappingrecognises79rainoresttypesandisbasedontheTraceyandWebb1975andTracey1982classifcationrameworkseeAppendix1.Inthisrameworkvegetationunitsareinitiallyclassifedintostructuraltypesandthensubdividedintobroadcommunitiesonthebasisotheclimatezonealtitudezoneandsoilparentmaterialandsoildrainagesituationinwhichthevegetationunitisconsistentlyound.WhenplanningrainorestrestorationprojectssitescanbeinitiallyclassifedintermsotheseenvironmentalparameterswhichcanthenbeusedtopredictthetypeorainorestandtheselectionotheappropriatepoolospeciessuitableorplantingataparticularsiteseePart3.Australianrainorestsattaintheirpeakdevelopmentascomplexmesophyllvineorests.ThesecommunitiesareoundonverywetandwetlowlandsandoothillswheresoilparentmaterialsrangeromriverinealluviatobasaltsandbasicvolcanicrocktypesAppendix1.Thesecommunitiesarecharacterisedbycanopytreespecieswhosesunexposedleavesaredominatedbylargemesophyll-sizedleaves12.5cmto25.0cmlongexhibitanunevencanopyextendingtobetween20to40metreswithmanytallemergenttreessuchasfgswithlargespreadingcrownsacommoneature.SpeciescompositionandthevarietyolieormsinthisrainorestcommunityisthemostcomplexoanyterrestrialvegetationtypeinAustralia.PlankbuttressingiscommonrobustwoodylianesvascularepiphytesandpalmsaretypicalandeshyherbswithwideleavessuchasgingersandaroidsaregenerallyconspicuousTracey1982.Exposedsitessuchasridgesandseaward-acingslopesotenexhibitcyclonedisturbedorbrokencanopieswithclimbertowersanddensevinetanglesotendominatedbyCaptainCookvineMerremiapeltata.ThesearesometimesreerredtoascyclonescrubsWebb1958.WithincomplexmesophyllvineorestcommunitiesvariationinsiteactorsresultsinconspicuousstructuraldierencessuchastheincreaseinpalmsonsiteswithimpededdrainageandgingersandaroidsingulliesandalongcreekbankswhicharepermanentlysaturatedwithwaterTracey1982. RepairingtheRainforest19ThenotophyllvineorestandthicketcategoriesincludeastructurallyandoristicallydiversegroupocommunitiesTypes6789101112and13Appendix1.Theyoccuronsmallareasobasicvolcanicparentmaterialsoncoolwetuplandsandhighlandsandonarangeodriersitesatvariouslowerelevations.Notophyllvineorestsandthicketsarealsoaeatureosandbeachridgesindriercoastalareas.Itisalsothemostextensiverainoresttypeclothingthegraniteescarpmentandmountainrangesataltitudesbetween400to1000metres.Thesecommunitieswhileextraordinarilyvariablearecharacterisedbymedium-sized7.5cmto12.5cmlongsun-exposedcanopyleavesacanopytreeheightrangeo12metresto45metresrattansorpalmlianessuchasCalamusspp.stranglerfgsrequentlyconspicuousepiphytesvariableamountsoernswalkingstickpalmssuchasLinospadixspp.andeshyperennialherbs.Photo5.Awelldevelopedcomplexrainforesttakesaverylongtimetomature.Complexityischaracterisedbyarangeoftrunksizesincludinglargetreestrunkbuttressingandspeciallifeformssuchasvinespalmsfernsandepiphytes.Inthisphototherootsofthistreeareprovidingarangeofmicrohabitatsandspecialisedniches.PhotoWetTropicsImages. 20RepairingtheRainforestPhoto6.AnexampleofacomplexnotophyllvineforestontheCarbineTableland.PhotoM.Trenerry.SimplemicrophyllfernforestsorthicketsdominatetowardstheupperendofthealtitudinalspectrumonthesummitsandupperslopesofthehigherpeakswhicharefrequentlyenshroudedbycloudandoftenexposedtostrongwindsAppendix1.TheseoftenpossessaconspicuousaeriallysuspendedmosscomponentandaresometimesreferredtoascloudforestsorwetmontaneforestsWerrenetal1995.Photo7.Anotophyllvineforestgrowingonbeachsands.Despitebeinginahighrainfallareathisrainforestissimpleinstructureandischaracterisedbyitslowstatureanabsenceoflargestemsthepresenceofwiryvinesanopenunderstoreyandthepaucityofspeciallifeformssuchasaroidsgingersandepiphytes.PhotoD.J.Metcalfe.Photo8.Asimplemicrophyllvinethicketgrowingonahighlandsummit.PhotoD.J.Metcalfe. RepairingtheRainforest21Areaswhichexperiencesignifcantwaterstressduringthedryseasonsupportcommunitiescharacterisedbytheoccurrenceotaxawhicharesemi-deciduoustodeciduousAppendix1.Semi-deciduousmesophyllvineorestsarerestrictedtominoroccurrencesintheWetTropics.Thecanopyisusuallycomparativelyeventoaheighto25metresto32metreswithdeciduousemergentsto36metres.Figsincludingclustercauliorousandstranglertypesandlianesratherthanrattansaregenerallyconspicuous.Epiphytesareuncommon.Therearesporadicoccurrencesodeciduousmicrophyllvinethicketsonfre-reerockysitesandexposedheadlandswithconstituentspeciesmainlymulti-stemmedandullydeciduous.Thecanopyothesecommunitiesisgenerallyunevenandaround3-5metreswithemergentsrisingto10metres.ScramblervinesandshrubsusuallywiththornsarecommonWerrenetal1995.Photo9.Anexampleoasclerophyllrainoresttransition.ThisormerEucalyptusgrandisoresthasadvancedtoastagewhereitisbothstructurallyandforisticallyarainorestcommunityandconditionsarenolongersuitableorthegerminationandgrowthonon-rainorestspecies.PhotoD.J.MetcaleSclerophyllrainoresttransitionsAppendix1representdierentstagesopost-disturbancesuccessionsuchasfreorcyclones.InmanypartsotheWetTropicswheretherainallisgreaterthan2000millimetresperyearthesetransitionalcommunitiesaretheresultoanextendedmajordisturbancereeperiod.Theircompositionvariesgreatlywitheachsub-typecharacterisedbycertainsclerophyllspeciessuchaseucalyptsandwattlesbeingadominantcanopyoremergentcomponent.Thesecommunitieshaveadvancedtoastagewheretheyarestructurallyandoristicallyrainorestcommunitieswiththeconditionsgenerallyunsuitableorthegerminationgrowthandperpetuationosclerophyllspecies.ThesclerophyllspeciesinthesewetclimatezonesbehaveinasimilarwaytoanearlysuccessionalpioneerspeciesseeChapter7withtheirpersistencedependantuponhighrequencyhighintensitydisturbancecausedbyregularburningregimes.Intheabsenceofrethereisatransitiontoaprogressivelymorediverseandcomplexrainorestcommunityandaprogressivelymoreunavourableenvironmentorthegerminationestablishmentorgrowthosclerophyllspecies. 22RepairingtheRainforest5.ECOSYSTEMECOLOGYEcologyisotenthepainulelaborationothebloodyobviousJ.G.Tracey1984.Ecosystemecologyisthestudyotheinteractionsamongorganismsandtheirenvironmentasanintegratedsystem.GeoTraceyinhisbookVegetationotheHumidTropicsoNorthQueenslandTracey1982employedastateactorecologicalrameworktoexplainthedierenttypesorainorestvegetationhedescribedortheWetTropics.HisexplanatoryrameworkisbroadlybasedontheconceptoJenny19411958whosuggestedthatanumberoindependentinteractivestateactorscontrolsoilandecosystempropertiesFigure1.Figure1.Conceptualrelationshipsbetweenthefvestateactorsoutsidetherectangleinteractivecontrolsinsidethelethandsquareandecosystemprocesses.Therectanglerepresentstheboundaryoanecosystem.Stateactorsarestaticoverecologicaltimescalesandconstraininteractivecontrols.Interactivecontrolsbothregulateandrespondtoecosystemprocesses.Disturbanceandotheractorscanpushthesystemtowardsanewstateecosystemchangeorinitiateanewcycleosuccession.Therighthandsquarerepresentssuccessionalprocessesandtheinteractionbetweenthescaleodisturbanceandthesubsequentdegreeoecosystemchangetimescalesoresponsesandtheavailabilityopotentialbiotawithwhichtorespond.ThefgureisadaptedromChapinetal1996STATEFACTORSThestateactorapproachemphasisesthevariablesthatcontrolecologicalprocessesratherthansimplydescriptionsospatialpattern.Climateisthemostinuentialstateactorthatdeterminesecosystemprocessesandstructurewhilesoilparentmaterialstronglyinuencesthetypesandertilityosoilsandvariationsinecosystemprocessestopographicrelieinuencesmicroclimateandsoildevelopmentatsmallerscaleswhilepotentialbiotarepresentthepooloorganismspresentinaregionthatcouldpotentiallyoccupyasite.Timeinuencesthedevelopmentosoilsandtheevolutionoorganismsgeologicaltimescalesandinuencessuccessionalprocessesandpatternsonecologicaltimescales.Italsodeterminestheresponseoecosystemstopastdisturbancesandenvironmentalchangesoverawiderangeotimescales.Togetherthesefveactorsdeterminethecharacteristicsoanecosystemwhiletheinteractionothese RepairingtheRainforest23actorswitheachothercontrolstheormationodierenttypesoecosystemsJenny1958.Factorssuchassoilparentmaterialhaverelativelydistinctboundariesandcanbereadilydelineatedonthegroundandunambiguouslymapped.Otheractorssuchasclimateandtopographyvarymoreorlesscontinuouslyanddonothavedistinctboundaries.ThesecontinuousactorscanbesimplifedandbettervisualisedusingtheTraceyandWebb1975approachosegmentingthesecontinuousactorsintozonesencompassingdefnedrangesovariationseealsotheexplanatorynotesattheendoAppendix1.ThisconceptounderlyingcontrollingactorsormsthelogicalbasisorthespecieslistspresentedlaterinPart3andordeterminingthetypeorainorestthatistheaimoarestorationprojectseeChapters15and16.Ash1988classifedthethresholdboundarylimitsorainorestdistributionontheAthertonTablelandintermsomeanannualrainallgeologicsubstrateandtopographyTable3andthisprovidesagoodexampleohowthesestateactorcontrolsinteract.Itisevidentthatrainorestcommunitiesextendintolowerrainallareasonertilebasalticsoilsandthewetterlimitsoopencanopiedsclerophyllorestvegetationareassociatedwithruggedtopographyonacidvolcanicgraniticandmetamorphicderivedsoils.Theavourabilityodierentsoilparentmaterialsorrainorestcanberankedsuchthatgranitesarelessavourablethanmetamorphicsedimentaryrockswhicharelessavourablethanalluviumwhichinturnarelessavourablethanweatheredbasalt.YoungunweatheredstonybasaltallowsrainoresttopersistinareasreceivingmuchlowerrainallthanonothersubstratessuchasatTolgaScrubReserveandCurtainFigNationalPark.Theparentmaterialsdiernotonlyintheirsoilchemicalandphysicalpropertiesbutalsointheirtopography.Forexamplegraniticandmetamorphicrockstypicallyproduceamoreruggeddissectedtopographythanisoundinbasaltoralluviallandscapes.Table3.LowermeanannualrainfalllimitmmforrainforestdistributionontheAthertonTablelandbasedonparentmaterialandtopographyderivedfromAsh1988SubstrateTerrainGentleTerrainRuggedAcidvolcanics17502000Granites17002000Metamorphics15501900Alluvium1500naScoria11101270Basaltweathered1050naBasaltstony800nananotapplicable 24RepairingtheRainforestINTERACTIVEFACTORSInadditiontotheindependentstateactorsdeterminingthebroaddistributionospeciesandvegetationcommunitiesthereisalsoasetointeractivecontrollingactorsJenny1958thatbothcontrolandarecontrolledbyecosystemcharacteristicsFigure1.Itistheactivityotheseinteractiveactorsthathelpstoexplainorpredictthetrajectoryandthesuccessorailureorestorationeorts.Importantinteractivecontrolsincludethesupplyofresourcesmodulatorsthatinuencetheratesoecosystemprocessesdisturbanceregimesbioticcommunitieshumanactivities.Resourcesaretheenergyandmaterialsintheenvironmentthatareconsumedbyplantstosupporttheirgrowthmaintenanceandreproductionsuchaswaternutrientscarbondioxide.Resourcesthatareconsumedbyaplantdepletetheirabundanceoravailabilityintheenvironment.Lightavailabilityorexampledependsonthestateactorsoclimateandtopographicpositionbutisalsosensitiveespeciallyinarainorestcommunitytothequantityoshadingbyvegetationasitdevelopsaninteractiveactor.Modulatorsdierromresourcesinthatwhileexertingtheirinuenceontheactivitiesoorganismsintheenvironmenttheyareneitherconsumednordepleted.ModulatorsincludesuchphysicalandchemicalpropertiesastemperatureandsoilpH.Modulatorsliketemperatureareconstrainedbyclimateastateactorbutaresensitivetoecosystemprocessessuchasshadingandevaporationbythedevelopingplantcommunity.SimilarlysoilpHdependsonboththetypeosoilparentmaterialandtimebutalsorespondstovegetationcompositionandorganicmatterdecomposition.Landscape-scaledisturbancesincludephenomenasuchascyclonesdiseasesfrewindandoods.Thiscategoryodisturbanceisanimportantdeterminantothestructureandprocessratesinecosystems.Likeotherinteractivecontrolsdisturbanceregimesdependonbothstateactorsandecosystemprocesses.Thenatureothebioticcommunityortheunctionaltypesoorganismsthatoccupytheecosystemincludingthetypesospeciespresenttheirrelativeabundancesandthenatureotheirinteractionscaninuenceecosystemprocesses.Functionaltypesaregroupsospeciesthataresimilarwithrespecttotheirroleincommunityorecosystemprocesses.Humanactivitieshaveanimpactonvirtuallyalltheprocessesthatgovernthepropertiesoecosystems.Thecumulativeimpactohumanactivitiescanaectstateactorssuchasclimatethroughchangesinatmosphericcompositionandpotentialbiotathroughtheintroductionononnativespeciesandtheextinctiononativespecies.Humanactivitiesalsoincludeactivitiesaimedatrestoringecologicalprocesses. RepairingtheRainforest256.THEROLEOFCANOPYGAPSINRAINFORESTREGENERATIONANDSUCCESSIONDisturbanceoccursatavarietyospatialandtemporalscalesandcanbecrudelydescribedasachangeoenvironmentalconditionswhichalterstheunctioningoabiologicalsystem.Rainorestregenerationcyclesaredrivenbydisturbance.Whenatreeallscarvingitswaythroughtheorestcanopyitproducesacanyonolightandanavenueochangeintothegloomotheunderstorey.Thenewpatchosunlightimmediatelystimulatesgreatchangesinthelieotheorestoor.Lightisenergyandenergybringschange.Giventhedensenatureorainorestcanopiesthecreationoagapinthecanopyisasignifcantevent.Thecreationoacanopygapresultsinnormallylimitingresourcessuchaslightandgrowingspacebeingmadeavailable.Canopygapsareusuallycreatedbyadisturbanceeventsuchastreeallsoover-maturecanopytreesthroughtolargeextensivecanopygapscreatedbyhighintensitywindsassociatedwithstormsorcyclones.Gapcreationsetsintrainacomplexre-buildingprocessinvolvingrainorestsuccessionseealsoChapter7.Thisrebuildingprocessisalsoreerredtoasgap-phasedynamicsOsborne2000.Treeallgapsareimportantandcomplicatedre-sourcesinarainorest.Mostrainoresttreesareentirelydependentonthesegapstoreachma-turity.Treeallgapsvarygreatlyinsizeshapeorientationandtheheightothesurroundingvegetation.Thisresultsindierencesinsunlightpenetrationtemperaturemoisturehumidityandwindregimeswithingapsodierentdimen-sions.Principaldierencesbetweentheenviron-mentwithinagapandtheenvironmentbelowarainorestcanopyareanincreaseinlightandachangeinitsspectralqualityanincreaseinbothsoilandairtemperatureandadecreaseinhumidityWhitmore1978.Therearealsoin-creasesinnutrientsasdeadplantmaterialde-caysatemporarydecreaseinrootcompetitionandsometimeschangesinmicro-relieandsoilproflecharacteristicsWhitmore1975.Duetothetemporalandspatialdierencesingapormationeverypatchorainorestconsistsoacomplexpatchworkotreesandorestodierentsizesagesandstagesomaturity.Photo10.Tropicalrainforestsarecharacterisedbytheirclosedcanopy.Notethepresenceofseveralsmallgapsofdifferentsizesshapesandorientations.PhotoQueens-landGovernment. 26RepairingtheRainforestTherearetwoalternativestartstoregenerationwithinagap.Eitherexistingsuppressedtreeseedlingsorsaplingsarestimulatedtocommenceupwardgrowthornewtreesestablishromseedsgerminatinginthegap.Ingeneralsuppressedseedlingsmostotengrowtomaturityinsmallgapswheretheexter-nalstimulusomicroclimatechangeandotheructuationsinresourceavailabilityarenottooextremebutareadequatetostimulateapicalgrowth.Innaturesmallgapsinthecanopyareocoursearmorecommonthanlargegapsandmanyrainoresttreesareadaptedtogrowunderthesesmallgapconditions.Small-gapadaptedspeciesusuallyhavelargerseedsthataredispersedlesswidelythanthelarge-gapadaptedspeciessincetheirtargetsarecloserandmoreabundant.LargeseedsacilitaterapiddevelopmentolargerootsystemswhichinturnresultinlargermorerobustseedlingsseealsoChapter8.Thestoreocarbohydratereservesinlargeseedsenableseedlingstowaitoragaptooccur.Bycontrastthedramaticmicroclimatechangesandotherenvironmentaluctuationsollowingtheormationoalargegapwillresultinthedeathoallormanyothepre-existingsuppressedplants.Largegapsaretypicallycolonisedbygroupsospeciesabsentromtheunderstoreyothema-tureorestwhichhaveevolvedtoexploitopensitesandincludethepioneerearlysuccessionalorgeneralistspeciesseealsoChapter7.Large-gapspecialistsrequiretheintenselightandhightemperaturesolargeholesinthecanopyorgerminationandgrowthbecausetheirseedlingscannottolerateshade.Theselarge-gapspecial-istscanusehighintensitysunlightarmoreef-cientlythanunderstoreyandsmall-gapspecialistspecies.Intoleranceolowlightconditionsandtheunavourablebalanceoar-redtoredwave-lengthradiationeectivelypreventregenerationolarge-gapadaptedspeciesunderaclosedcanopyorinsmallgaps.Large-gapcoloniststypicallygrowrapidlyandpossessumbrella-likecrownstocapturethemaximumamountosun-light.Large-gapspeciesareotenprolifcproducersoruitspackedwithmanytinyseedsandtheyusuallybearruitthroughoutmuchotheyear.Thisshotgunreproductivestrategyenhancesthelikeli-hoodolarge-gapspecialistspecieshavingtheirseedspresentwhenalesscommonlargegapinthecanopyappears.Thereisanelementorandomnessinthesysteminatropicalrainorestwithhundredsotreespeciesandalargenumberodispersalagentsvirtuallyeverygapwillbecontestedbyauniquecombinationospecies.Itisunlikelythataallentreewillbereplacedbyamemberothesamespecies.Itseemsappropriatetoviewarainorestasapatchyconstantlychangingmosaicgeneratedinlargepartbyunpredictabletreeallgaps.Photo11.Theproliferationofseedgerminationinthegapformedfollowingthedeathandcollapseofalargerainforestcanopytree.PhotoCampbellClarke. RepairingtheRainforest27Lightisakeystimulusorarangeobiologicalunctions.Itisnowknownorexamplethatasingleverykeyhormoneco-ordinateshowaplantgrows.AmongotherthingsthehormonestrigolactonedetermineswhetheraplantgrowslongandskinnyorbroadandbushyGomez-Roldanetal2008.Whenlightlevelsornutrientlevelsarelowstrigolactonelevelsrisesuppressingthedevelopmentobudsintobranchesresultinginatallthinplantwhichenablesittoreachmorelightandalsomax-imisestheamountoenergythatgoesintoreproduction.EnergyisthereoreocusedonproducingfowersandseedsratherthanvegetativegrowthGomez-Roldanetal2008.Converselywhenthereisalotolightandnutrientsavailablestrigolactonelevelsallencouragingbranchingandmakingaplantthatisbroadandbushyandabletomakethemostoabundantresources.InadditionwhenstrigolactonelevelsarehighnotonlydoesthisstopbudsromturningintobranchesbutitalsocausesstemthickeningwhichensuresthataplantgrowingtalltoreachthelightalsohasthestructuralstrengthtodosoGomez-Roldanetal2008. 28RepairingtheRainforest7.PLANTSUCCESSIONWHATISECOLOGICALSUCCESSIONSuccessionistheprocessbywhichthecomponentspeciesoacommunitychangeovertime.Withinanyplantcommunitysomespeciesmayprogressivelybecomemoreorlessabundantovertime.Theymayevenappearaneworvanishromasitealtogether.Insimpletermsthischangeinwhatislivingataparticularsiteisecologicalsuccession.Specieshavesetsoenvironmentalconditionsunderwhichtheywillgrowandreproducemostoptimally.Whentheseenvironmentalconditionschangetherelativecompetitivenessospeciesalsochanges.Theenginewhichdrivessuccessionisecologicalchangeordisturbance.Followingadisturbanceanecosystemgenerallyprogressesovertimeromasimplesystemwithonlyewdominantspeciestoamorecomplexsystemwithmanyinterdependentspecies.Rainorestrestorationisdeeplyrootedinecologicalsuccessionandtherearemanypracticalbeneftsandinsightstobegainedromtakingacloserexaminationosuccession.SuccessionandrestorationareintrinsicallylinkedbecausesuccessionencompassesspeciesandenvironmentalchangeovertimewhileecologicalrestorationisthepurposeulmanipulationothatchangePalmeretal1997.Successionaltheorycanalsoprovidearameworktoenhancerestorationefciencysincerestorationactionscanalterspeciescolonisationestablishmentandaccumulationandthroughthesealterationsaectthetrajectoryandrateoecosystemdevelopment.Harnessingnaturalsuccessionalprocessesinrainorestrestorationprojectswillresultinagreaterchanceosuccessthanelaborateattemptstoreconstructamatureullyunctionalrainorestecosystemmanually.Assuccessionproceedsarainorestrestorationsitewillexperiencechangesinbiomassstructureandplantspeciescomposition.Signifcantchangesalsooccurtosoilpropertiessoilorganismsandnutrientcycling.WildliespeciestracktheseenvironmentalchangesandrecolonisetheregeneratingorestassuitablehabitatsdevelopandoodandotherresourcesbecomeavailableTuckerSimmons2009.Inadditionastheorestdevelopsinheightagreaternumberoeedingnichesdevelop.Thisverticalpartitioningooragingheightsalsocontributestothehighspeciesdiversityoundinrainorests.KEYSUCCESSIONALPROCESSESFOLLOWINGDISTURBANCEDispersalandcolonisationThefrststageoanaturalsuccessioninvolvesthesuccessuldispersaloplantseedstoasite-equivalentinmanywaystothedeliberateintroductionoplantsasseedlingsorseedstoarainorestrestorationsite.Thedispersalabilityomostrainorestplantspeciesisgenerallyquitelimitedsoinmanyinstancesdispersallimitationmaybeamajorobstacletocolonisation.Barrierssuchasdistanceorinhospitableinterveninghabitatscanlimitdispersaloseedtoasite.Thereareseveralwaystoenhancetherateocolonisationoasitebyrainorestspecies.Theusualmethodistoplantrainoresttreeswhichovertimeprovideresourcessuchasoodshelterorpercheswhichattractseeddispersingbirdsandyingoxeswhilecreatingconditionswhichenhancegerminationandprotecttheresultingseedlings.ForexampleMartinez-GarzaandHowe2003showedthatplantingtreesspeeded-uptheprocessosuccessionbyatleastthreedecades.OtherwaysthathaveprovedsuccessulinincreasingrainoresttreedispersalandcolonisationtoasiteincludetheinstallationoartifcialperchestocreateocalpointsobirddispersedseedsTohetal1999Holletal2000.ThenucleationprocessensuingromtheprovisionoperchingstructureshasbeenoundtoacceleratethecolonisationandestablishmentorainorestspeciesSlocumHorvitz2000. RepairingtheRainforest29EstablishmentPlantestablishmentisassistedbyactorsthattrapseedsandbysae-siteswhichbothincreasethechancesosuccessulseedgerminationandprovideprotectionotheresultingseedling.Onemethodtoincreasethenumberandvarietyosae-sitesistocreatephysicallyheterogeneousrestorationsites.Asmuchotheexistingphysicalheterogeneityatarestorationsiteasislogisticallyandpracticallyeasibleshouldbepreserved.Thephysicaldiversityoasitecanalsobeaugmentedbytheintroductionologsrocksandhollows.OvertimeestablishmentcanalsobeprogressivelyenhancedthroughbiologicalacilitationwhichistheprocessbywhichestablishedplantsimprovetheperormanceootherplantsCardinaleetal2002.Improvedperormancemaybeachievedthroughphysicalprocessessuchaswhenestablishedplantsimprovesoilmoistureavailabilitytemperatureorlightconditionsorreduceexposuretowind.PlantswhichhelpacilitateseedlingestablishmentaresometimesreerredtoasnurseplantsHenriquezLusk2005.Severalrainorestrestorationmethodstakeadvantageosuchbiologicalacilitation.Seedandseedlingpredationduringestablishmentcansometimesbeamajorcauseorestorationailure.Insomelocationsplantingsmayneedtobeprotectedromherbivoresbyencesorindividualprotectiveexclosuresuntiltheybecomeestablished.Naturalstructuralandchemicalplantdeencesagainstherbivorygenerallyincreaseduringsuccessionasaunctionochangingspeciescompositionandincreasingageoindividuals.Becausepalatableundeendedplantsotendominatetheearlierstagesosuccessionherbivorycanseverelyretardinitialsitecaptureandincreasethelengthotimethatasiterequiresexpensivemaintenance.RainorestrestorationplantingsprovideasmorgasbordofavoursandyoungtendertissuetowildlieandsomespeciessuchasyoungBleedingheartHomalanthusnovoguineensisarecommonlysubjectedtoseriousherbivorybypademelonsThylogalestigmatica.BreakdownsinthesuccessionalprocessItisimportanttorecognisethatdisturbancedoesnotnecessarilyinitiateaconstructiveorprogressivesecondarysuccession.RegressivearrestedordefectedsuccessionsarewidespreadandculminateinrainoresttypescompletelyunliketheoriginalmaturephasecommunityConnellSlatyer1977Niering1987.Therearethreemaintypesobarrierslimitingsuccessionalprocesses.ThesebarriersdirectlyorindirectlyaecthowsuccessionproceedsbyeitherinfuencingaspeciesarrivaloritsestablishmentinacommunityChazdon2003LandscapeeaturessuchastheareaandspatialarrangementoorestpatchesandthenatureosurroundinglanduseswillinfuencetheprobabilityodispersaloplantspeciestoasiteChazdon2003.BioticandabioticcharacteristicssuchasseedpredationrainallsoilconditionandthehistoryolandusewilldeterminewhichspeciesinitiallyestablishandsurviveatasiteLetcher2009.FinallyasaconsequenceosuccessionspeciesinteractionswillincreaseinimportanceandwillinfuencewhichspecieswillsuccessullyassembleintoacommunityChazdon2008Letcher2009.Regressivedefectedorarrestedsuccessioncanalsoresultromavarietyoalteredphysicalorbiologicalsiteactorsincluding 30RepairingtheRainforestPhysicalsiteactorssuchassoilcompactionsoilporositymicroclimatesoilertilityNiering1987GanadeBrown2002Chazdon2003watertablelevelsMaggsHewett1993.Alackolatersuccessionalspeciesintheseed-rain.RainorestsuccessiononmanyabandonedareasnowappearstobearrestedatanearlysecondarystageduetodispersallimitationolargeseededlatersuccessionalspeciesHopkins1981.InvasivespeciesmonopolisingasitepreventingtheestablishmentolatephasespeciesWebb1959Uhletal1988Erskineetal2007.Geographicalbarriers-dispersallimitationandapaucityoavailableseedislikelywhenthedistancebetweenpatchesorainorestislargeHopkins1981.Humanactivitiesthatmaintaintheoccupationoasitebyinvasiveweedsorearlysuccessionalnativespeciessuchaspermanentopeningsotheorestcanopyorroadstracksandotherinrastructure.Frequentdisturbancesalteringthestabilityoasystem.Ahighrequencyodestructivecyclonicactivityorexamplemaypreventthere-establishmentomaturerainorestandmaintainadefectedsuccession.Thestudyosuccessionprovidesvaluablelessonsorimprovingthesuccessorainorestrestorationprojects.Inmanycasescommunitiesareabletorecoverollowingmildtomoderatedisturbances.Restorationinthesecircumstancesshouldbeocusedonhasteningnaturalsuccessionaltrajectories.Howeverasystemthathasexperiencedseveredisturbancemayrequireintensiverestorativeeortstorecreateenvironmentalconditionsthatavournaturalsuccessionalprocesses.Restorationtacticsshouldocusonsitepreparationimprovingestablishmentsuccessandprotectingplantedspeciesromherbivoryandcompetitionduringtheirdevelopment.Incorporationorpreservationophysicalheterogeneityduringsitepreparationshouldhelptoprovidesae-sitesorseedlingestablishmentandostermosaicsovegetationthatbettermimicnaturallandscapes.Importantlyirainorestrestorationpracticesaretocreateunctionalsystemsitisessentialtodesignintothesystemnaturalsmall-scaledisturbancetomimictheinitiationosuccessionalprocesses.Onewaytopromotenaturaldisturbanceistoplantapercentageopioneerorearlysuccessionalspecieswhichhaveshortliecycles.Incorporatingaproportiononaturallyshort-livedtreescreatesatemporalmosaicodisturbancesastheytendtoshedoliageandbranchesduringtheirgrowthbeoresenescinganddyingatanearlyage.Inthiswayaspatialandtemporalpatchworkosmall-scaledisturbancesbecomesintegratedintotherainorestrestorationsiteasaseriesonaturaleventsseealsoChapters6and9. RepairingtheRainforest318.LIFEHISTORYSTRATEGIESNumeroussystemshavebeendevelopedorclassiyingspeciesintodierentsuccessionalstagesbasedontheirlie-histories.AmajorcriterionintheseclassifcationshasbeenwhetheraspeciesrequiresagaporsuccessulregenerationandtheassumptionthatspeciesdierinthesizeogapsandthesiteswithingapswheretheycanregenerateHartshorn1980Whitmore1982Denslow1987.Gapandshadetolerantliehistorypatternsortropicaltreeshavebeenthoughttoinvolvecontrastingsuitesocorrelatedtraits.Ingeneralanadaptivetrade-oisexpectedbetweentheabilitytosurviveintheshadedunderstoreyandthecapacityorrapidgrowthinlargegapsHartshorn1980Denslow1987PoulsonPlatt1989.Shadetolerancemayalsovarywithtreeageandwithenvironmentalconditions.ForexampletreestendtoshowgreatestshadetoleranceintheiryouthandthoseongoodsitestendtobemoretolerantoshadethanthoseonpoorersitesBaker1950.LARGE-GAPTRANSIENTSPECIESSpeciesadaptedtosurvivalinlarge-gapsareunabletoestablishundershade.Acharacteristicolarge-gaprainorestspeciesistheirrapidgrowthratesshortlie-spansandhighmortalityintheshadeSwaineWhitmore1988.Large-gaprainorestspeciesingeneralproducelargenumbersosmallseeds.TheirseedsareotenproducedwithoutregardtoseasonandmosthaveadormancyperiodWhitmore1978.TheseedsomosttransientspeciesonlygerminateingapslargeenoughorsunlighttoreachthegroundoratleastpartothedayandrequirehighirradiancelevelsorbothseedlingestablishmentandgrowthGoosem20032008.Seedlingsandyoungplantsothesespeciesareneveroundunderaclosedcanopysincetheirgerminationisgenerallyinhibitedbyar-redlightwavelengthswhichdominatesbeneathaclosedrainorestcanopyVazques-Yanes1976.Fluctuatingtemperaturesassociatedwithincreasedsunlightalsootenenhancesthegerminationolarge-gaprainorestspeciesWhitmore1975.Large-gaptransientspeciesincludepioneerandearlysuccessionalstagespecieswhicharealsosometimesreerredtoasgeneralistspecies.Pioneerspeciesareshort-livedshadeintolerantperennialsthatgrowtoamaximumheighto8metres.TheybegintheregenerationprocessinareasomediumtolargedisturbanceexamplesincludeWikstroemiaindicaRubusrosifolius.Earlysuccessionalspeciesareastgrowingperennialtrees10-25metreshighlivingor15-50years.WithenvironmentalmodifcationthesemaysometimespredominateandormaclosedcanopyexamplesareMelicopespp.Polysciasspp.Dendrocnidespp.Alphitoniaspp.Rhodomyrtusspp.andmanymembersotheEuphorbiaceaeamily.Thegrowthrateotransientspeciesisrapidbecausetheirsaplingshavetobecapableoreachingtheupperstrataduringtheliespanoasinglelargegap.TransienttreespeciesareotenubiquitousandwidespreadwiththesamepoolospeciesotenaconspicuouscomponentoawiderangeodierentrainorestcommunitytypesBarlowetal2007Nordenetal2009.Otentheyarenotonlytolerantohighlightlevelsbutalsotolerateawiderangeosoilertilitiestemperaturesandsoilmoisturelevelsandmosthaveawidelatitudinalandaltitudinaldistributionalrange.Thesecharacteristicshaveledsometoreertosuchspeciesasgeneralistratherthanspecialistspecies.Manypioneerandearlysuccessionalplantsgrowandproducenewleavesowersandruitthroughouttheyear.Welllitareasotherainorestsuchasriverbanksanddisturbededgeswheretheseplantsthriveareattractivereliableoodresourceareasormanyanimals.Thepremiumplacedonrapidgrowthbypioneerandearlysuccessionalspeciesisotenattheexpenseoproducingchemicaldeences.Herbivoresrangingrominsectstotreekangaroosavailthemselvesotheseislandsoundeendedpalatableoliage.Groupsobirdsmayinturnockinresponsetohighinsectdensities.Thehighinsectdensitiesassociatedwiththeundeendedpalatableoliageincombinationwiththe 32RepairingtheRainforestelevatedtemperaturesassociatedwithsunlightpenetrationmayalsodrawreptilessuchaslizardsandskinksintotree-allandotherlargergapsintherainorest.Theseareimportantdynamicresourcerichplaceswithmanyinteractingoodwebs.Photo12.TheearlysuccessionalMacarangatanariusisatypicalregrowthspecieswhichisavouredbydisturbanceandgrowsinlargerainorestgapsoronrainorestmargins.M.tanariusiswindpollinatedwithfoweringandruitingoccurringseveraltimesayear.Ithasatypicalearlysuccessionalshotgunreproductivestrategyproducinghugenumbersosmalleasilydispersedseeds.PhotoCampbellClarke.PioneerspeciescompriseonlyaverysmallproportionotheorainanytropicalrainorestWhitmore1984.ThisisalsothecaseintheWetTropicswherethereareonlyahandulonativerainorestpioneertreesmostowhichhaveverywidegeographicaldistributions.Therelativelylowproportionopioneertreespeciesisacommoneatureotropicalrainorestswhicharegenerallyveryresilienttosmall-scalenaturaldisturbancesbutarenotwellequippedtohandlelarge-scaleartifcialdisturbanceshavingagenerallyimpoverishedpioneerorawithwhichtorespondGoosem20032008.SMALL-GAPPERSISTENTSPECIESIncontrasttothelightdemandingtransientspeciesseedsomostlatersuccessionalstagerainoresttreesareabletogerminateinthelightandtemperatureconditionsoundbeneathaclosedrainorestcanopy.Speciestypicalolaterseralstagesarecharacterisedasaclassbylargeseedswithsubstantialoodreservesandareabletoestablishandpersistindeepshade.TheirseedsaregenerallyproducedperiodicallyinresponsetoclimaticstimuliandtheyhaveeithernoorbriedormancyHopkinsetal1976.Importantlytheirseedlingscanotenpersistgrowingslowlyornotatallindenseshade-markingtimetillasuitablelightgapoccurs.Small-gappersistentspeciescomprisethegreatmajorityorainoresttreespecies.Small-gapsmalldisturbanceadaptedspeciesincludelatesecondaryandmaturephasespecies.WetTropicsexamplesolatesecondaryspeciesincludeAcronychiaspp.andDiploglottisspp.whileexamplesomaturephasespeciesincludeCryptocaryaspp.Sloaneaspp.Elaeocarpusspp.Argyrodendronspp.Syzygiumspp.andAcmenaspp.Small-gapspeciesTable4haveseedlingsandsaplingscapableosurvivinglowunderstoreylightconditions.Theyarehoweverdependentonsomecanopydisturbanceorsubstantivegrowthandorreproductionalthoughtheirgrowthisslowevenunderoptimallightconditions.Highlightlevelsbeorematurationmaydamageleavesandmeristemssothatmaximumgrowthisusuallyattainedinsmallgapsorontheshadededgesolargegaps.Itmaytakemanyyearsbeorethematurephasespeciesproducearuitcropsothatrainorest RepairingtheRainforest33restorationsitesmaytakeahundredyearstobecomereproductivelyindependentotheadjacentprimaryorest.Thelatesecondarygroupincludesmanyotheemergenttreespecieswhichwhileshadetolerantasjuvenilesswitchtobeingshadeintolerantwhenanappropriatesizedgapoccurs.Whenthisswitchoccurstheyneedtogrowquicklyenoughtoovertopthecanopyduringtheliespanothegap.Asagroupthesespecieshaveanumberootheranomalouseatures.Manyhavewingedwinddispersedseedsandmanyareoundingregariouscongregationsthatcanormconspicuouscolouredpatchesacrossthelandscapewheninowerorinleaush.SeveralmembersotheProteaceaeamilysomeArgyrodendronspp.andFlindersiaspp.allintothisgroupasdotheKauripinesAgathisspp.andtheHooppineAraucariacunninghamii.Dispersalothewingedseedcommontomanylatesecondaryrainorestspeciesisbygyrationorgravityandtendstobelimitedwiththemajorityoseedsallingbeneathorclosetothecanopyothemothertree.SURVIVALSTRATEGIESANDTHEIRROLEINSUCCESSIONForrainorestrestorationpurposesitishelpultoadoptaschemesuchasthatdevelopedbyHopkinsetal1976andWebbandTracey1981whodividedrainorestspeciesintoourmajorregenerationguildsonthebasisotheirsurvivalstrategiesandtheirroleinthesuccessionalprocessTable4.Recognisingitsoverwhelmingimportancetheliehistorycharacteristicsorainorestspeciescanbearrayedalongacontinuumoadaptiveresponsestothepatternsolightavailability.ThiscontinuumrangesromshadeintolerantpioneerandearlysuccessionalspeciestransientorgeneralistspeciesthroughlightrequiringspecieswithsomeshadetoleranceearlysecondarytolatesecondaryspeciesTable4tothepersistenthighlyshadetolerantslowgrowingspecieslatesecondarytomaturephasespeciesTable4.Thereisevidencethatplantspeciesdierintheproportionotheirnetprimaryproductionwhichisdevotedtoreproductiveeort.SpeciesoccupyingtheearlierphasesosuccessionhaveahighreproductiveeortusuallyintheormoalargenumberoseedsandacorrespondinglyhighintrinsicrateopopulationincreaseHarperetal1970.Thesespecieshaveanr-orientedcharactersyndromesensuMacArthurandWilson1967.LaterseralstagespeciesexpendlessonreproductiveeortandpossessaK-orientedcharactersyndrome.Agreaterpartotheiravailableenergyresourcesisdevotedtopersistentvegetativeorgansthisconersadvantageinthelong-termstruggleorexistenceincrowdedresourcelimitedstableenvironmentsHarperetal1970.Thecapacityorainorestrestorationtorestorethecompositionandunctionoanoriginalorestdependsprimarilyontheavailabilityeitherasplantedseedlingsorintheseedrainospeciesrepresentingalltheelementarycanopytreetypesandotherlieormssuchasepiphytesandlianes.Restorationspeedstheprocessbydirectplantinglatesecondaryandmaturephasespeciestoasite.Thelengthotimebeoreaplantedtreeproducesruitisaunctionoitsliehistoryastypifedbyitssuccessionalstageanditspositionwithinarestorationsite.SpecieswithmoreaccesstolightsuchasthoseonamarginoremergentswillgenerallyproduceearlierandmoreabundantruitcropsTuckerSimmons2004. 34RepairingtheRainforestLarge-gaptransientorgeneralistspeciesSmall-gappersistentspeciesLifehistorystrategyPioneerspeciesoropportunistspeciesEarlysecondaryspeciesorlargegapspeciesorlong-livedpioneerspeciesLatesecondaryspeciesMaturephasespeciesorsmall-gapspeciesShadetoleranceVeryshadeintolerantShadeintolerantShadetolerantwhenyoungbutshadeintolerantwhenmature.Shadetolerant.Lowlightrequirements.LifespanShort-livedotenherbaceousorsot-woodedperennials.Maturerapidly.Liveor1-15yearsPerennialtreesastgrowingliveor15-50years.Perennialtreesslowergrowingmayliveorover100years.Long-livedslowmaturinggrowingor1001000years.GrowthratesVeryastFastModerateSlowHeightTo8metres1025metresGrowtolargestatureincludesemergenttreesGrowtomoderatestature25metresFloweringGenerallyowerprouselythendieorowercontinuouslyOtenowerthroughouttheyear.Flowerregularlybutonlyonceoratmosttwiceayear.Eitherowerregularlyorirregularlysometimesonlyonceeveryseveralyears.SeedproductionProducelargenumbersosmalleectivelydispersedseed.Herbaceousspeciesgenerallywinddispersedwoodyperennialsgenerallyeshy-ruited.Regularlyproducelargenumbersosmallwelldispersedseeds.Generallyeshy-ruited.Produceruitmostyears.Proportionowinddispersedspecies.Tendencyormastyears.Irregularruitingseeddispersalpoor.Maytake40-50yearstoreachruitingstage.Seedsgenerallylargeandew.Generallyeshy-ruited.SeedviabilityLongmayrequirescarifcation.RequireslightorgerminationLongupto30years.Generallyshort3-4months.Otenlimitedtoaewweeks.GerminationHighratiooredtoar-redlightwavelengthsstimulatesgerminationphytochromeHightemperaturesstimulategerminationthermoblastic.Frequentlypersistasdormantseedinsoilseedbanks.Requirelightorgermination.Generallypersistinsoilseedbanksuntillargecanopygapopens.Abletogerminateinshadeorinthesun.Persistsinseedlingbanksnotassoilseedbanksuntilmediumcanopygapopens.Abletogerminateindeepshadeorinthesun.Canpersistormanyyearsassuppressedjuvenilesseedlingbanksuntilsmallcanopygapopens.ModeofgerminationPhenerocotylarPhenerocotylarMainlyphenerocotylarbutsomecryptocotylarspeciesPredominantlycryptocotylarbutsomephenerocotylarspecies.WooddensityVerylowLowModeratebutvariableHighEvolutionarystrategyr-adaptedr-adaptedK-adaptedK-adaptedGeneralNotusuallyacomponentotheprimaryorestneedslargedisturbance.Simplebranchingarchitecturewithamonopodialshoot.Usuallypresentinprimaryorest.IncludesmostemergentrainoresttreespeciesOtendominaterainorestsodrierareas.Speciesothecomplexrainorest.Complexbranchingarchitecturelargewoodylimbs.Table4.Lifehistorystrategiesofplantspeciestypicalofdifferentstagesintheecologicalsuccessionofrainforests RepairingtheRainforest35CharacteristicgeneraBreyniaPipturusRubusTremaWikstroemiaMerremiaMacluraLycopodiellaVariousvinesandgroundernsAlphitoniaDendrocnideHomalanthusMacarangaMallotusNeolitseaScheferaAilanthusAleuritesAlbiziaBlepharo-caryaBrachychitonChionanthusDarlingiaGlochidionGrevilleaGuioaLitseaLophostemonMeliaMelicopeMillettiaPittosporumPolysciasSemecarpusSynoumAglaiaAlectryonAlloxylonAlstoniaBrachychitonBuckinghamiaCanariumCardwelliaCastanospermumDavidsoniaDiploglottisElaeocarpusEupomatiaEuroschinusHalordiaHarpulliaHeliciaHernandiaHodgkinsoniaJageraMelicopeMicrocitrusMischaryteraMusgraveaPolyosmaRistantiaRockinghamiaSarcopteryxSarcotoechiaStenocarpusTerminaliaAcronychiaAgathisAraucariaArchidendronAryteraAthertoniaAtractocarpusCaldcluviaCarnarvoniaCeratopetalumCupaniopsisDiospyrosDysoxylumElaeocarpusFlindersiaGeissoisHicksbeachiaHollandaeaMischocarpusOpisthiolepisOreocallisPalaquiumPodocarpusPseudowein-manniaSterculiaSundacarpusSymplocosSynimaToonaWaterhouseaXanthostemonAcmenaArgyrodendronBackhousiaBeilschmiediaBubbiaCerberaCinnamomumCorynocarpusCryptocaryaDaphnandraEndiandraGmelinaHarpulliaIdiospermumMyristicaNiemeyeraOstreariaPlacospermumPlanchonellaPrunusPseuduvariaSloaneaSyzygiumCharacteristicfamiliesManyEuphorbiaceaeManySapindaceaeManyLauraceaeRutaceaeProteaceaeMyrtaceaeFicusSEEDPRODUCTIONSeedproductionbythepioneerandearlysecondaryspeciesoccursregularlywiththeproductionolargenumbersoseedswithlongviability.Themajorityoseedsinthesoilseedbankinarainorestareromthepioneerandearlysecondarygroups.Latesecondaryspeciesruitmostyearsbuttheirseedviabilityismostlylimitedtoseveralmonths.MaturephasespeciesarecharacterisedbyinrequentgregariousfoweringswhichotenproducemassivequantitiesoruitHopkins1975.Howevertheirseedswillnottoleratedesiccationandareviableoronlyashortperiodgenerallysurvivingorseveralweekstoseveralmonths.Thetimeintervalbetweenlargeruitingeventsisusuallygreaterthanthreeyears.IntheinterveningperiodsmanyindividualssporadicallyproducesmallerquantitiesoruitHopkins1975.Thedierentsuccessionalplantgroupsarealsocharacterisedbydierencesinthesizeotheirseeds.RainorestspecieswithlargerseedstendtobecomeestablishedinmorestableshadyplantassociationsthanthosewithsmallerseedsFosterJanson1985.RainoresttreesthatrequirelargelightgapsorseedlingestablishmenttendtohavesmallerseedsthanthosethatbecomeestablishedbeneathaclosedorestcanopyFosterJanson1985.modifedromHopkinsetal1976Large-gaptransientorgeneralistspeciesSmall-gappersistentspeciesLifehistorystrategyPioneerspeciesoropportunistspeciesEarlysecondaryspeciesorlargegapspeciesorlong-livedpioneerspeciesLatesecondaryspeciesMaturephasespeciesorsmall-gapspecies 36RepairingtheRainforestAnotherdistinguishingcharacteristicisthatpioneersandearlysecondaryspeciesmostlyormseedbankswhereaslatersuccessionalrainorestspeciesgenerallyormseedlingbankshavingnooraverylimitedseed-dormancyphaseGoosem20032008.Inthemajorityorainoresttreesthereisacomparativelyshortintervalbetweenseed-dropandgermination.Averycommonregenerativestrategyisthatinwhichpopulationsotreeseedlingsandsaplingspersistorlongperiods.Inthepopulationdynamicsothesetreesthereservoiroseedlingsandsaplingsunctionsinawaywhichisinsomerespectsanalogoustothatoaseedbank.Thesimilarityextendseventothecriticalroleodisturbanceotheestablishedvegetationandthecreationocanopygapsinreleasingindividualsromthebank.Inmanyrainoresttreesseedsarenotproducedeachyearandthecapacityotheseedlingstosurviveorlongperiodsundersub-optimalconditionsensuresthatthepotentialorregenerationothespeciesismaintained.Regenerationinvolvingaseedlingbankischaracteristicoplantsadaptedtocircumstancesinwhichtheopportunitiesorrecruitmentromtheseedlingpopulationoccurinrequentlyanddependuponsenescencedamageandmortalityamongtheestablishedplantstoproducecanopylightgaps.SEEDTRAITSThemorphologicaltraitsoyoungseedlingsareimportantintheregenerationstrategiesoplants.Traitsrelatedtotheunctionocotyledonsappearparticularlyimportant.Theseincludewhetherthecotyledonsremainenclosedwithinthetestacryptocotylaroremergeromitphanerocotylarandwhetherthecotyledonsarereserveorgansorphotosyntheticorgans.SeedsrompioneerandearlysecondaryspeciesalmostwithoutexceptionhavephanerocotylargerminationCliordMott1986.TheproportionocryptocotylyismuchhigherinthematurethaninlatesecondarystagesCliordMott1986Table5.Phanerocotylargerminationisadvantageousinearlysuccessionsincethecotyledonsbecomephotosynthetic.Howeveritmayhavecostsinbothmechanicalsupportandmoreimportantlypredation.Converselysuppressedlatesuccessionalspeciesshouldgainadvantageromhavingtheircotyledonsenclosedwithinthetesta.Thecotyledonsinsuchcircumstancescanactasoodstorageorgans.Thismodeogerminationconerspersistenceasitmaydeendtheseedlingromherbivoresandpathogens-itheshootisgrazedordiesitcanbereplacedbyexpansionothecotyledonaryaxillarybuds.Functionallythisisequivalenttomultiplegerminationeventsromasingeseed.ThetendencyorcotyledonunctiontoshittowardsstoragewithincreasingseedmassunderpinsthereserveeectinitiallyproposedbyWestobyetal1996-theseedlingsolargerseededspeciesperormbetterbecausetheyhavemorestoredreservesavailabletothemduringtimesocarbondefcitresultingromdeepshadeororinterimmaintenancewhilereplacingphotosynthetictissuelostthroughherbivoryorotherormsodamage.Thekeyconceptisthatlargeseedshaveabsolutelymorestoredenergyreservesthansmallerseeds.AgreaterproportionoseedreservesinlargerseededspeciesremainsuncommittedduringseedlingdeploymentandisheldinreservetoprovisionseedlingsthatgerminateinhazardousenvironmentsKidsonWestoby2000.Greaterseedlingsurvivalisonemechanismwhichmaycompensateorlowerseedproductioninlargerseededspecies.Thereserveeectcouldhaveevolvedasoneoasuiteomechanismspromotinggreaterseedlingsurvivalinlargerseededspeciesunderconditionsodeepshade. RepairingtheRainforest37Thereservescontainedinlargeseedsenableseedlingstopersistorlongperiodsinlowlightenvironments.ForexampleConnellandGreen2000examinedpatternsoseedlingrecruitmentpersistenceandgrowthoChrysophyllumsp.nov.amaturephaseshade-tolerantWetTropicsrainorestcanopyspecies.TheyobservedthatthegrowthrateoseedlingsoChrysophyllumsp.nov.wasextremelyslowintheshadedunderstorey.Duringa27yeardatacollectingperiodtheyrecordedadoublinginheightotheseedlingsandconfrmedthatthesematurephasespeciescouldpersistindeepshadeorlongperiodsotimeinasuppressedstate.Thisstrategyopersistenceincreasesthepossibilitythatlightconditionswilleventuallybecomemoreavourableorgrowthbeoretheydie.Table5.Examplesofsomecharacteristicgeneraofthefourphasesofrainforestregenerationgroupedbothaccordingtotheirmodeofregenerationandthestageofregenerationinwhichtheycommonlyoccur.afterCliffordMott1986.PhasePhenerocotylarCryptocotylarPioneerAgeratumPhysalisRubusSenecioSolanumUrticaEarlysecondaryMacarangaMallotusHomalanthusSolanumTremaLatesecondaryAilanthusBrachychitonFlindersiaHalfordiaMeliaSynoumDavidsoniaDiploglottisHernandiaMicrocitrusMatureElaeocarpusGeissoisPseudoweinmanniaSloaneaAcmenaArgyrodendronBeilschmiediaCryptocaryaDysoxylumEndiandraHarpulliaIdiospermumPseudocarapaSyzygium 38RepairingtheRainforest9.MODELSOFDYNAMICCHANGETheclassicalconceptoecologicalsuccessioninvolvestwobasicassumptions1.Speciesreplacementduringsuccessionoccursbecausespeciestendtomodiytheirenvironmentastheygrowmakingconditionslessavourableortheirownpersistenceresultingintheirprogressivesubstitutionand2.Astablesel-perpetuatingclimaxsystemultimatelyappearswhichisinbalancewiththephysicalandbiologicalenvironment.Egler1954suggestedthattheclassicalmodelosuccessionmaynotapplyinallsituationsandproposedtwoalternativesuccessionalmodelsi.relayoristicsmodelii.initialoristicsmodelRELAYFLORISTICSRelayoristicsassumesthatonlypioneerspeciesareabletocoloniseasiteintheconditionsthatoccurimmediatelyollowingalargedisturbance.Mostinotallothespecieswhichcomprisetherelativelystablematurestagewerenotpresenteitherasplantsorpropagulesattheinitiationosuccession.Intherelayoristicsmodeltheearlycolonisingspeciesmodiytheenvironmentsothatitismoresuitableorlatersuccessionalspeciestoinvadeandgrowtomaturityacilitation.INITIALFLORISTICSIntheinitialoristicsmodelthemodifcationswroughtontheenvironmentbyearliercolonistsneitherincreasesnorreducestheratesorecruitmentandgrowthtomaturityolatercolonists-specieswhichappearlateraresimplythosethatarrivedlaterorelsearrivedatthebeginningbutgrewslowly.Sinceearlysuccessionaltransientspeciesareshortlivedtheyarereplacedmoreotenthanarelonger-livedpersistentlatesuccessionalspecies.Ipropagulesotheselaterspeciesareavailableorinvasionthenateraperiodotransitionthelatterspecieswillaccumulateresultinginthegradualdecreaseinrelativeabundanceotheearlierspecies.Thegreatertoleranceolatesuccessionalspeciesisimportantinallowingthelatespeciestosurvivelongperiodsosuppressionbeneaththecanopy.Ineectthisgreatertoleranceandpersistencecompensatesorlowervagilityopropagulesincreasingthechancesthataseedlingoalatesuccessionalspecieswillbeonthesitetoreplaceadyingearlierindividualresultinginasuccessionospeciesleadingromshort-livedtransientspeciestolong-livedpersistentspecies.ConnellandSlatyer1977proposedabroadersystemosuccessionalprocesseswhichincludedthei.acilitationmodelii.tolerancemodeliii.inhibitionmodelFACILITATIONMODELTheiracilitationmodelollowstheclassicalreplacementpatternwherebyeachsuccessivesuiteospecieswhichoccupiesasitemakestheenvironmentlessavourableortheirownpersistenceandmoreavourableortheirsuccessors. RepairingtheRainforest39TOLERANCEMODELIntheirtolerancemodelenvironmentalmodifcationsinducedbyearliercolonistsmayeitherincreaseordecreasetheratesorecruitmentandgrowthtomaturityolaterspecies.Thelatterappearlaterbecausetheyeitherarrivedlateroripresentdirectlyaterthedisturbancehadtheirgerminationinhibitedortheirgrowthsuppressed.INHIBITIONMODELIncontrastintheirinhibitionmodeltheearlyoccupantsratherthanacilitatingtheprogressiveoccupancybyotherspeciesinhibittheinvasionootherspeciesthroughphysicaloccupancythroughphysicalcompetitionthroughtheuseoallelopathicchemicalsorthroughothereectivemeansoinhibition.Latersuccessionalspeciesmayonlybeabletoenterthesitewhentheinhibitingspeciesaredamagedordieo.ThisrepresentsabioticmechanismorarrestedsuccessiondiscussedinChapter7.FLUCTUATINGRESOURCESChessonandHuntley1997showedthattomaintaindiversitythereisaneedorboththeexistenceouxorvariabilityandpopulationscapableodierentiallyexploitingthisuxorvariability.Davisetal2000developedthisobservationurtherandsuggestthatcolonisationisinuencedbythreemajoractors1.propagulepressurei.e.thenumberoseeds2.characteristicsothenewlyarrivingspeciesi.e.traits3.theinvasibilityothenewhostenvironmenti.e.vacantniches.Davisetal2000arguethataplantcommunitybecomesmoresusceptibletocolonisationbyanewindividualwheneverthereisanincreaseintheamountounusedresources.Theirtheoryrestsonthesimpleassumptionthatanyincomingspeciesmusthaveaccesstoresourcessuchaslightnutrientsandwater.Speciesenjoygreatersuccessestablishingwithinasiteitheydonotencounterintensecompetitionortheseresourcesromthespeciesalreadyoccupyingthesite.Anincreaseinresourceavailabilitycanoccurinoneotwoways-eitherbyadeclineintheuseoresourcesbytheresidentvegetationoralternativelybyanincreaseinresourcesupplyatarateasterthantheresidentvegetationcansequesterit.Resourceusecoulddeclineduetoadisturbancethatdamagesordestroysanareaovegetationreducingtheuptakeolightwaterandnutrients.Anincreaseinresourcesupplycouldariseinaparticularlywetperiodincreasedwatersupplyoraparticularlydryperiodwheredroughtconditionsisevereenoughcauseapulseopartialcommunitylealossorpatchesomortalitybothowhichcreategapsinpreviouslyclosedvegetation.Theresultingincreasedlightmayincreasecolonisationandestablishmentinotduringthedroughtitselthenoncethedroughtisover.Newlyrestoredsiteshaveanabundanceoavailableresourcesasmuchothegroundstoreyremainsavailableandtheresourceswithincanbereadilyexploited.Whetherresourceuptakegoesdownorsupplygoesuptherearemoreresourcesavailableandthisiswhenacommunityismoresusceptibletoinvasionorcolonisationbynewindividuals.Thisalsomeansthatsuccessulspeciescolonisationestablishmenteventsarelikelytooccurepisodicallyorirregularly.Thisisespeciallysowhenitcoincideswithavailabilityothecolonisingspeciesseed.Disturbanceisanaturaleatureoallecosystemsandistheeaturethatacilitatesthecolonisationestablishmentandsubsequentgrowthprocessbyreducingthecoverorvigouroplantcompetitorsandbyincreasingresourcelevelssuchaslightnutrientsorsoilwater.ConsequentlytheuctuatingresourceavailabilityhypothesisDavisetal2000wouldpredictthat 40RepairingtheRainforestEnvironmentssubjecttopronouncedfuctuationsinresourcesupplyaremoresusceptibletoinvasionbynewindividualsthancomparablesystemswithmorestableresourcesupplies.Thisemphasisestheneedtoconsiderbuildingsmall-scaletemporalandspatialdisturbanceintoarestorationplan.Environmentsaremoresusceptibletoaninfuxonewindividualsimmediatelyollowingabruptdisturbancesthatcauseeitheranincreasesoradecreaseinresourceavailabilitysuchasollowingrestorationatreeallorcyclonedamage.Invasibilitywillbegreaterwhenthereisaprolongedintervalbetweenanincreaseinresourcesupplyanditseventualrecapturebyasitesresidentvegetation.Arelationshipbetweenthespeciesdiversityoaplantcommunityanditsresiliencetoinvasionbyurtherspeciesdoesnotnecessarilyexist.Whetherornotinvasionbynewindividualsactuallyoccursinaparticularenvironmentalsodependsontheamountoincomingseedandthetraitsotheseincomingspecies.Thereoreitisimportanttoconsidertheunctionalroleospeciesselectedorplantinginarestorationprojectandtheirattractivenesstotheanimalseeddispersalguild.Thesesuccessionalmodelsshowthatthespatialandtemporalpatternrequencyandintensityodisturbancewithinarainorestrestorationprojectarelikelytoaecttherateandnatureocolonisationestablishmentandgrowthootherindividualsandspecies.ThisisdiscussedurtherinChapter67and8.Photo13.A25yearoldplantingatLakeBarrineAthertonTablelands.Decomposinglogscreatehabitatformanyspeciesincludingfungiandaddnutrientstothesoil.Theselogsaretheremainsofearlysuccessionalspeciesfromtheinitialplantingin1988.TheirdemisehasallowedspaceandlightfornewseedlingsandcreatedsuitablehabitatforaroidssuchastheAlocasiabrisbanensisinthisimage.PhotoBiotropicaAustraliaPtyLtd. RepairingtheRainforest4110.DISPERSALScientistsandartistshavelongponderedboththebeautyandmysteryoowers.CharlesDarwinwasperplexedbytherapidevolutionanddominanceooweringplantsinthelateCretaceousandtheirroleinrecruitinganimalstohelpdistributepollenandseedsaphenomenonhecalledtheabominablemysteryFriedman2009.MauriceMaeterlincktheBelgianplaywrightandpoetwhowasawardedthe1911NobelPrizeorLiteratureconsideredthemoststrikingeatureoplantswasthediversityoowersthathaveevolvedtoenhancesexualreproductionMaeterlinck2008.AssociatedwiththeevolutionoowerscametheneedorplantstotriggeroweringattherighttimetoensurethatoweringoccursatthetimeoptimalorsuccessulreproductionseeChapter11andtheco-evolutionopollinatorstomaximisepollinationsuccessandthesurvivalothespecies.Dispersalreerstothemovementopollenorseedawayromtheparentplant.Unlikeanimalsplantsarelimitedintheirabilitytoseekoutreproductivepartnersortofndavourableconditionsorlieandgrowth.Whilesomeplantspecieshavepollenorseedsadaptedorbeingcarriedbythewindmanyotherstrickananimalintocarryingtheirpollenorseedsbywrappingthepollenorseedinanattractiveowerorwithinatastyruitandadvertisingtheowerortheruitsripenessbyitscolourorsmell.POLLENDISPERSALWithinrainoreststhereareveryewwindpollinatedspecies.ThesearemainlyconfnedtoemergentgregariousgymnospermspeciessuchastheKauripinesAgathisspp.andtheHoopandBunyapinesAraucariaspp.Geneticdiversityinrainorestangiospermsisthereorecloselylinkedtothediversityoower-visitinganimalsWaser1983.InthetropicsinvertebratesrepresentthemajorityoowervisitingpollinatorsBawa1990andthistrendisreectedinwhatweknowotheWetTropicsorawherethemainowervisitorsareinsectsromtheColeopterabeetlesHymenopterabeeswaspsantsandDipteraiesBoulteretal2008.Beetlesareanimportantanddiversegrouporainorestpollinatorsworld-wideBawa1990Sakaietal1999andpollinationbybeetlesisclaimedtooccurinuptoonequarteroourrainorestoweringplantsinAustraliaIrvineArmstrong1990.Toensurepollinationsuccessplantshaveevolvedowerstoenticeandattractanimalsaswellasmechanismstoencouragetheseanimalstovisitotherplantsothesamespecies.Flowerscanoerrewardsonectarpollenragrancesandoilstoattractandmanipulatethebehaviouroawidevarietyoanimals.Inordertoattractanimalpollinatorsowersmust1advertisetheirpresencesuchascolournectarguidesorscent2enticebyoeringorappearingtooerarewardsuchaspollennectarorbreedingsitesand3beaccessibleappropriateshapepositionandaplacetoland.Photo14.Xanthostemonormosusfowersarewelladaptedorpollinationbyblossombats.Itsrobustfowerswhichopenintheeveningcomeequippedwithapollinatorrewardintheormolargepurplenectarieswhichareclearlyevidentinthisimage.Antsalsorelishthesenectariesbutaredestructiveothefoweranddonotactaspollinators.PhotoWetTropicsImages. 42RepairingtheRainforestPollinationsyndromesTable6aresuitesoowertraitswhichconsistentlyaidintargetingandattractingcertainanimalpollinators.SomeothesetraitsincludeowershapesizecolourodourrewardtypenectarcompositionandtimingooweropeningHoweWestley1986.Certaincombinationsotraitsincreasethelikelihoodosuccessulvisitationandpollentranserbyparticularpollinatinganimals.Howevergenerallytheydonotexcludepotentialvisitationbyawiderangeootherpollinatinganimalgroups.Therearetwobasicwaysoattractingananimalpollinator-throughtheuseovisualcuesandolactorycues.ThemainvisualcueinvolvesowercolourwiththeollowingcoloursknowntobeespeciallyattractivetoparticulargroupsopollinatorsButteries-brightredyelloworblueBirds-vividredororangeFlies-purplebrowngreenishBees-variableyelloworbluebutnotpureredMoths-whitepalegreenBats-dullwhitegreenBeetles-variableusuallydullgreenishoro-white.Photo15.ThegoldenbouquettreeDeplancheatetraphyllahasawidespreaddistributionintheWetTropicsCapeYorkPeninsulaandNewGuinea.Itsrobustlargegolden-yellowinforescenceprovidesaplatormorbirdpollination.Thecupshapedpetalsllwithnectarwhichistheinducementtoattractandrewarditspollinators.PhotoD.Storch.Anolactorycueisessentiallyasmellemittedbyaplantthatisparticularlyappealingtocertainanimals.SmellsknowntobeparticularlyalluringtocertaingroupsopollinatorsincludeButteries-slighttomoderatelysweetBirds-noodourFlies-rottingeshordungBees-sweetMoths-stronglysweetBats-strongruitymuskyoretidodouroermentationBeetles-strongruitydecayingfshorammonia. RepairingtheRainforest43Boulteretal2008assignedadominantcolourto1533WetTropicsrainorestplantspeciesowersandplacedthemintoseveralpollinationsyndromegroups.Theirowercolourgroupsincludedwhitegreenyelloworangepinkredbluepurplebrownnocorolla.TheoverwhelmingmajorityoWetTropicsrainorestowerswereoundtobewhitegreen72percentwithtwelvepercentyelloworangeeightpercentpinkredsixpercentbluepurpleonepercentbrownandonepercenthavingnocorolla.TheyoundthatagreaterproportionovineshavecolourulowersthantreesorshrubsBoulteretal2008.Anotherinterestingfndingwasthattheproportionowhitegreenowersappearstodecreasewithincreasingowersizesothatsmallowersaremoreotenadullwhiteorgreencolourthanarelargerowers.TheowersotheoverwhelmingmajorityoWetTropicsrainorestspecieshoweveraresmallinsizei.e.lessthantenmillimetresindiameterwhilelargeowersarerelativelyrareBoulteretal2008.Irrespectiveotheirpollinationsyndromeitwouldappearthatveryewrainorestangiospermsareconstrainedbyhighlyspecialisedpollinationrequirements.ThevastmajorityorainorestplantsarecapableobeingpollinatedbyadiverserangeoaunalspeciesWaser1983House19891993Bronstein1995Waseretal1996.Thematchbetweenpollinatorandsyndromeisotenrelaxedallowingmanyowerstobevisitedbymanykindsopollinators.ForexampleCromeandIrvine1986demonstratedthatinBumpysatinashSyzygiumcormiforumwhichhasatypicalbatbirdpollinationowertypethelowsteadyoccurrenceoinsectvisitationtotheowersproducedertilisationresultsequaltothatobirdvisitationertilisation.IrvineandArmstrong1988alsoobservedthatinSarsaparillaAlphitoniapetrieiandQueenslandmapleFlindersiabrayleyanabeetlesiesandwaspsactaspollinatorsatdierenttimesothedaywhereasNutmegMyristicainsipidawasexclusivelybeetlepollinated.InBolwarraEupomatialaurinathepollinationsystemhasbecomespecialisedtotheextentthatonlyonegenusoweevilElleschodesisknowntovisititsowersthroughoutitsgeographicrangeromeastVictoriatonorthQueenslandIrvineArmstrong1988.ThesouthernpollinatingspeciesoEupomatialaurinaisElleschodeshamiltoniibuttheweevilsthatpollinatetheWetTropicspopulationsareanasyetundescribedElleschodesspeciesWilliamsAdam2010.Photo16.Syzygiumcormiforumbumpysatinashproducesmassesofowersupto50mmdiameteronitstrunkdescribedascauliforousandsometimesitslowerbranchesdescribedasramiforous.Duringthedaythefowersattractanarrayobirdswhileatnighttheyattractnumerousmammalssuchasstripedpossumslong-tailedpygmypossumsandHerbertRiverringtailpossums.ThenectarisalsoanimportantoodorthetinyrainorestblossombatMacroglossusminimuswhichhasalongpointednoseandathintongue-perectorlickingnectarromthefowers.PhotoMartinCohenWildaboutAustralia. 44RepairingtheRainforestTable6.PollinationsyndromesAgentTimeoforalopeningColourOdourFlowersizeFlowershapeInsectattractingtraitsBeetlescantharophilyDayandnightVariablebutusuallydullgreenishoro-whiteStrongspicyruitydecayingfshorammoniaVariableFlattenedorbowl-shapedCarrionanddungiessapromyophilyDayandnightPurple-brownorgreenishStrongdecayingmeatordungVariableFlatordeepotentrapsHoveriesandbeeiesmyophilyDayandnightVariableVariableSmallModeratelydeepBeesmelittophilyDayandnightordiurnalVariablebutnotpureredotenyelloworblue.Otenwithultravioletnectarguides.UsuallysweetVariableFlattobroadtubeHawkmothssphingophilyCrepuscularornocturnalWhitepaleorgreenStrongsweetLargeDeepotenwithspurSettlingmothsphalaenophilyCrepuscularornocturnalVariabledrabcolouredgenerallywhitepaleorgreenModeratelystrongsweetSmallFlatormoderatelydeepsometimesaggregatedinheadsButteriespsychophilyDayandnightordiurnalVariablebutbrightlycolourede.g.brightpinkredyellowblueorangeModeratelystrongsweetLargeErectwithaattenedrimdeeporwithspurotentrumpet-shapedVertebrateattractingtraitsBatschiropterophilynocturnalWhitegreenorlightcolouredStrongmustyetidodouroermentationLargeFlatshavingbrushbell-shapedordeeptubeotenarrangedonbranchesortrunkBirdsornithophilydiurnalVividotenredororangeNoneLargesturdyTubularsometimescurvedrobustcorollaotenhangingAbiotictraitsWindanemophilyDayandnightDrabgreenNoneSmallSepalsandpetalsabsentormuchreducedlargestigmatamuchpollenotencatkinsSEEDDISPERSALSeeddispersalmovesospringawayromtheparenttreeresultinginalowerdensityoindividualsspreadoveralargerareaandincreasingchancesosuccessulestablishmentConnell1975.ThisisimportantsincegerminationandgrowthawayromtheparentplantincreasestheopportunitiesoaseedfndingasuitableareatoinhabitavoidsunavourableconditionsaroundtheparentplantreducesinbreedingandreducescompetitionbysiblingsoridenticalresourcesWillsonTraveset2000.DispersallimitationisoneothekeyactorsimpedingrecruitmentorainoresttreespeciestorestorationsitesTilman1997Hubbelletal1999.Threeeaturesthatstronglyinuencedispersalareseedsizeabundanceanddispersalmechanism.SeedsorainoresttreesrangeinsizeandabundancebasedonliehistorystrategiesthatenhancesurvivalandspeciescoexistenceseeChapter8.ForexampletheseedsopioneerandearlysuccessionalspeciesarerequentlysmallabundantandwidelydispersedwhereaslatesuccessionaltreespeciesoteninvestewerlargerseedswithresourcestorecruitinthedimcompetitiverainorestunderstoreyDallingHubbell2002. RepairingtheRainforest45Adistinctivephenomenonotropicalandsubtropicalrainorestangiospermsistheproductionoruitswithaeshypulpwhichareconsumedbyawidevarietyoanimalspecies.BecausetheseedothemajorityotropicalrainoresttreespeciesaredispersedbyanimalsratherthanbyothermechanismWunderle1997theinterdependenceoruit-eatinganimalsandthedispersaloseedsisoundamentalimportancetotheecologyandunctioningorainorestsJanzen1975Corlett1998.Photo17.Rainorestruitscomeinmanysizesshapescoloursandaromaswhichattractadiverserangeoanimalseeddispersers.PhotoM.Trenerry.Inarainorestmosttreesarriveattheirsiteoestablishmentviathegutoananimal.Howeveronlyanimalswhichdonotdigestseedareeectivedispersalagentszoochory.Tobeaneectivedispersalagentananimalmusteithereatboththeruitandtheseedbutpasstheseedsundamagedinitsaeceseatonlytheruitdiscardingtheseedsorallowseedstoadhereorsticktoitsbody.Themostcommonmodeoanimalseeddispersalisbypassageoseedthroughthegutoabirdormammal.Oneprerequisiteorhigh-qualitydispersalisthatarugivoreshouldneitherconsumeruitsbeoreseedmaturitynordestroytheseedsduringruithandling.WithrelativelyewexceptionsanimalsthateatruitpulpdonotdestroytheseedsitsurroundsCorlett1998.Asaresultormostrugivorousanimalsseedsareunnecessaryballastoccupyingvaluablegutspaceandaddingweightwhichmostanimalsdiscardassoonaspossible.VerylargeseedsthatareeasilyseparatedromtheruitpulptendtobedroppedromthemouthordiscardedbeoretheyenterthemouthbyallbuttheverylargestrugivoressuchascassowarieswhiletinyseedsinaslipperyruitpulpareswallowedwholebyallincludingspeciesthatareusuallyconsideredseedpredatorsShiels2011.Plant-rugivoreinteractionscanbeinuencedbydierentruittraits.ParticularcombinationsotraitsrelatedtotheconsumptionoruitsanddispersaloseedsbyspecifcgroupsorugivoreshaveledtotheinerenceodispersalsyndromesvanderPijl1982Charles-Dominique1993Table7.Thephysicalstructureoseeddispersaldevicesknownasdiasporesisgenerallycorrelatedwithsuchvariablesasthedispersalagenthabitatandsuccessionalstage.Fruittypesuchasberrydrupenutandthesizeoruitsandseedsmayconstrainruithandlingandseeddispersalbyanimals.SmallruitandlargeruitwithsmallseedsareconsumedanddispersedbyagreaternumberorugivoresthanlargeruitwithlargeseedsreviewedinJordano2000.Rainoresttreeswithdiasporesadaptedtodispersalbyruiteatingaunadisplayanumberotraitswhichencouragecertainanimalsanddiscourageothers.ThequantityandnutritionalqualityoruitpulpthesizesoseedsandthechemicalcompositionoruitpulpandseedsmaydetermineattractivenesstodierentdispersergroupsHowe1989Grubb1998TewksburyNabhan2001.Photo18.Largesingleseededruitscanonlybedispersedbyasmallspecialisedgroupoanimals.IntheWetTropicsthisroleislargelyconfnedtoagroupolargebodiedbirdswithawidegapesuchasthecassowaryseveralrainorestinteriorpigeonsandthemigratorypiedimperial-pigeon.PhotoWetTropicsImages. 46RepairingtheRainforestAgentColourOdourFormRewardPrimarilyself-dispersedGravitybarochoryVariousNoneUndistinguishedNoneExplosivedehiscenceactiveballistochoryVariousNoneExplosivecapsulesorpodsNoneBristlecontractionpassiveballistochoryVariousNoneHydroscopicbristlesinvaryinghumidityNonePrimarilyabioticdispersalWaterhydrochoryVarioususuallygreenorbrownNoneHairsslimesmallsizeorcorkytissueresistssinkingorimpartslowspecifcgravityNoneWindanemochoryVarioususuallygreenorbrownNoneMinutesizewingsplumesorballoonsimparthighsuracetovolumeratioNonePrimarilyvertebratedispersalzoochoryHoardingmammalsmammalochoryBrownWeakoraromaticToughthick-wallednutsindehiscentSeeditselHoardingbirdsornithochoryGreenorbrownNoneRoundedwinglessseedsornutsSeeditselArborealrugivorousmammalsmammaliochoryBrowngreenwhiteorangeyellowAromaticOtenarillateseedordrupesotencompoundotendehiscentArilorpulprichinproteinsugarorstarchBatsmammaliochoryGreenwhiteorpaleyellowAromaticormustyVariousotenpendantPulprichinlipidorstarchTerrestrialrugivorousmammalsmammaliochoryOtengreenorbrownNoneToughindehiscentoten50mmlongPulprichinlipidorproteinHighlyrugivorousbirdsornithochoryBlackblueredgreenorpurpleNoneLargearillateseedsordrupesotendehiscentseeds10mmlongPulprichinlipidorproteinAnyrugivorousbirdornithochoryBlackblueredorangeorwhiteNoneSmallormediumsizedarillateseedsberriesordrupesseeds RepairingtheRainforest47Photo19.Themuskyrat-kangarooisaprimitiverainorestmarsupialwhichisanefcientseeddisperserandhoarder.PhotoM.Trenerry.SeeddispersalbybirdsornithochoryAeatureotherainorestsotheWetTropicsistheverylargenumberorugivorousseeddispersingbirdspecies.AveryimportanttraitothebirdseeddispersalsyndromeistheobservationthataseedpassingthroughthedigestivetractoabirdotenimprovesseedgerminationsuccessHollanderVandenWall2009.BirdshaveheightenedcolourvisionandatendencytoswallowseedsandruitswholeLomascoloetal2008sothegeneraltraitsdisplayedbybirddispersedseedincludesmallbrightlycolouredfeshyruitsArmestoRozzi1989FischerChapman1993Lomascoloetal2008.Thereisgreatvariationinbothbirdbodysizeandthesizeotheirgape.Thelargerthebirdandthelargeritsgapethelargerthesizeotheruititcanprocess.ThishighlightstheimportanceothecassowaryasthesolelongdistanceanimaldispersalagentormanyothelargestseededspeciesintherainorestsotheWetTropics.Photo20.ThecassowaryisthelargestrugivoreintherainorestsotheWetTropicsandistheonlylongdistancedisperserorseveralverylargeseededrainoresttrees.PhotoWetTropicsImages. 48RepairingtheRainforestPROTECTIONOFSEEDFROMPREDATIONPlantshavealsoevolvedcharactertraitswhichprotectimmatureruitsrompredationincludingcamouagee.g.unriperuitsareotengreenmechanicalmethodssuchasspinesandanarrayochemicaldeenceswhichmaketheunriperuitsunpalatablepoisonousoruninvitingtopotentialconsumers.SEEDDISPERSALBYWINDANEMOCHORYInstarkcontrasttotheanimaldisperseddiasporeswinddispersedseedsareusuallygreyorbrownmimickingthecolourodeadplanttissueHoweWestley1986.SeedswhichglideinastillenvironmentarewellrepresentedamongstlatesuccessionalemergentrainoresttreesandlianesHarper1977wherebothwindandheightenhancethepotentialdispersaldistance.TraitsincludewingstructuresCastroetal2010andalackoobviousrewardsDuetal2009.Anemochoryismorecommonlyoundinopenhabitatsanddeciduousandsemi-deciduousrainorestsArmestoRozzi1989andismoreprevalentinsitesexposedtopersistentstrongwindsonsummitsandupperridgesintheWetTropicsWebbetal1986.WinddispersedseedsotenmatureinthedryseasontooptimisedispersaldistanceDuetal2009.Seeddispersalbywindhasgenerallybeenobservedtobearlessefcientthandispersalbyanimals.Undernormalconditionsthemaximumdistancetravelledbywinddispersedrainorestseedsislessthan100metresWebbTracey1981butthisdistancemayincreasetouptoonekilometreunderexceptionalwindstormconditionsWhitmore1975.Winddispersedtreeswithlargewingedseedscharacteristicallyhaveaclumpeddistributionintherainorestandunlikemostrainoresttreesareotenoundgrowinggregariously.Inruitchoiceexperimentsbirdswereoundtogenerallypreerbrightlycolouredredorangeandblackandultra-violetlightreectingruitoverwhiteanddullgreenandyellowruit.Redandblackaregloballythemostcommonruitcoloursobird-dispersedplantspeciesWillsonWhelan1990Herrera2002.RedandblackexhibitstrongercontrastsagainstoliagethanothercoloursmakingruitmoreconspicuousoravianrugivoresSchmidtetal2004.Soruitswithbird-dispersaltraitsaremostlyvibrantblackblueredororangeincoloursuchasmembersotheamiliesLauraceaeSapindaceaeElaeocarpaceaeandMyrtaceaeHoweWestley1986.SEEDDISPERSALBYMAMMALSMAMMALOCHORYUnlikebirdsmammalsrelyonsmellmorethanvisionorlocatingood.Thegeneralsetotraitsthatcharacterisethemammalseeddispersalsyndromeincludelargegreenordullcolouredeshyruitwhicharemoreragrantcomparedtobird-dispersedseedsWillsonetal1989FischerChapman1993Lomascoloetal2008.Thedisadvantageoseedadaptedtomammaldispersalisthatmostmammalsdestroyalargeproportionotheseedtheyconsume.Bat-dispersedruitsareusuallydominatedbydullercolourssuchasbrownsgreensoryellows.Photo21.Thespectacledfyingoxisanimportantrainorestpollinatorandseeddisperserwhichcantravelmanykilometresinanightandovermanykilometresbetweencamps.PhotoM.Trenerry. RepairingtheRainforest49SEEDDISPERSALBYWATERHYDROCHORYDispersaloseedbywaterisbasicallyconfnedtorainoresttreesringingwatercourses.Seedsdispersedbywatergenerallyhavetheabilitytooatandresistwaterdamage.ThewoodymaterialenclosingtheseedothebluequandongElaeocarpusangustioliusthelargeseedotheblackbeanCastanospermumaustraleandthecorkyirregularlyshapedglobularmasscontainingthenumerousseedsotheLeichhardttreeNaucleaorientaliscanoatandremainviableinwaterorconsiderableperiods.Thisisanecessaryrequirementorspeciesotenoundinriparianrainorests.Photo22.ThesphericalragrantfowerheadsotheLeichhardttreeNaucleaorientalisdevelopintobuoyantgolball-sizedruits.TheLeichhardttreeisacharacteristictreeothegalleryorestsinnorthernAustraliaandalsogrowsinlowlandrainorestparticularlyinswampyandriparianareasintheWetTropics.PhotoCampbellClarke.SEEDDISPERSALBYGRAVITYBAROCHORYWhilerollingdownslopesmayseemtrivialgravitydispersalispossiblytheonlymeansodispersalorsomelargeseededspeciessuchascycadsCycadaceaeandRibbonwoodIdiospermumaustralewhicharetoxicandhavenoknownanimaldisperserhoweverCrome1990suggeststhathistoricallyRibbonwoodsdispersermayhavebeenanowextinctdinosaurthesizeoafvetonnetruck.IMPORTANCEOFVERTEBRATESEEDDISPERSALINRAINFORESTSPlantspeciesadaptedordispersalbyvertebratesgenerallyrepresentbetween75percentand90percentowoodyplantsintropicalrainorestsWillsonetal1989Jordano1992.TherainorestsotheWetTropicsaretypicalinthisrespectwithasmanyas95percentowoodyplantsbeingadaptedorvertebratedispersalbysome65vertebrateanimalseeddispersersWestcottetal2008.Thesevertebrateseeddispersalvectorsinclude17mammalspeciesand48birdspecieswhichrepresentaroughlysimilarproportionalbreakdowntothatoothertropicalrainorests.Boththebirdandmammalseeddispersergroupsincludespeciesthatprocessseedsgentlyandprovidehighqualitydispersalaswellasspecieswhoseprocessingresultsinsignifcantlevelsoseeddamageormortality.IntheWetTropicsithasbeenoundthat64percentomammalseeddispersersalsorequentlydamageorcausethedeathoseedsascomparedwithjust23percentobirdseeddisperserspeciesWestcottetal2008.TheseresultsemphasisetheimportantroleobirdsasthemajorlongdistanceseeddispersalagentintherainorestsotheWetTropics. 50RepairingtheRainforestAbout1300plantspecieswithseedsadaptedordispersalbyvertebrateanimalshavebeenrecordedintherainorestsotheWetTropicsWestcottetal2008.These1300speciesincludemembersrom132amiliesand469genera.AsummaryothemostspecioseanimaldispersedWetTropicsplantamiliesarepresentedinTable8whileTable9liststhemostspecioserainorestplantgeneradispersedbyanimalseedvectorsWestcottetal2008.Thissortoinormationshouldbeusedwhenplanningrainorestrestorationprojectsasitprovidesalogicalbasisortheselectionandproportionsodisperserattractivespeciesoridentiyingthosespecieslesslikelytobemovedacrossthelandscapebynaturaldispersersandorincorporatinglean-timeandkeystoneresourceswithinaproject.Table8.MostspeciosevertebratedispersedplantfamiliesintheWetTropicsFamilyNoofspeciesMyrtaceae102Lauraceae100Sapindaceae78Rubiaceae68Euphorbiaceae50Moraceae43Annonaceae40Rutaceae38Elaeocarpaceae36Meliaceae31Table9.MostspeciosevertebratedispersedplantgeneraintheWetTropics.GenusNoofspeciesSyzygium46Cryptocarya37Ficus35Endiandra32SEEDSIZEFruitordiasporesizehasbeenshowntobeoneothemostsignifcantactorsdeterminingselectionoruitsanddispersaloseedsbyrugivoresHerrera1985Levey1987Jordano1992Wheelwright1993PeresvanRoosmalen2002.Ingeneralthelargertheruitthesmallerthenumberopotentialdispersalagents.IntherainorestsotheWetTropicsorexampledrupesandberrieswithadiameterolessthan11millimetresareconsumedbyallanimalseeddispersersthosewithadiameterobetween11millimetresand24millimetresareconsumedby84percentodisperserswhilethosewithadiametergreaterthan24millimetresareconsumedbyonly27percentotheanimalseeddisperserguildWestcottetal2008.Fruiteatingbirdscanbedividedintoopportunistsandspecialists.Fruitsdevouredbyopportunisteedersareusuallysmalllessthan11millimetresdiametermanyseededotenshowyandusuallyjuicy.Largeruitsattractspecialisteedersandcontaineworsingleseeds.Theopportunisteederruitstypiypioneerearlysuccessionalphaserainorestplantspecieswhilethespecialisteederruitsaremoretypicalolateandmaturephasespecies. RepairingtheRainforest51SEED-RAINSuccessorainorestrestorationoverthelongertermisgreatlydependentonaninuxoseedrainviaeectiveseeddispersalmechanisms.Theattractivenessoarestorationsitetothelocalseeddisperseraunacanhaveamajorinuenceonwhichtreespeciesarriveatthesiteandhowquicklytheyarrive.Theplantingorainoresttreesmaygreatlyspeedtheearlystagesoorestsuccessionandtheresultingenhancementoseeddispersalcanleadtotheprogressivediversifcationoinitiallylow-diversityplantingsParrottaetal1997.Intheorytreespeciesthatprovidesuitableruitswouldbeexpectedtoattractmoreseeddispersalagentsandmoreandagreaterdiversityoincomingseedsthantreespecieswithunattractivenon-eshyruits.Whetherornotsometreesareinitiallyplantedlargeseededtreespeciesareunlikelytoarriveatisolatedsitesotheirownaccord.Includingsomeothesespeciesintheplantingmixwillbothensuretheirsurvivalinthelandscapeandprovideoodortheirdispersalagentsitheselaterre-invadeorarereintroducedtotheareaseealsoChapter12.Foranimal-dispersedspeciesdispersaldistancesareexpectedtobelongerinspeciesthatruitintimesorelativeruitscarcity.AtthesetimesalargerproportionoaruitcropislikelytobeconsumedandseedsmaybetakenartherbyrugivoresoragingoverlongerdistancesoroodvanSchaiketal1993.Thisisaveryimportantconsiderationinrestorationplantings.Theincorporationoarangeoleantimeruitingspeciesismorelikelytomaketheplantinganattractivetargetorrugivorousseeddispersersincludingthemorelongdistancedispersers.Thequantityandqualityorainorestseedsdispersedintoarestorationsiteislargelydeterminedbyhowattractivethesiteistorainorestseeddispersersespeciallybirds.AttributesthatcontributetoasitesattractivenessincludetheavailabilityoperchsitesthediversityandavailabilityoeshyruitsthestructuralcomplexityothevegetationHoll1998Stiles1992Wunderle1997andtheavailabilityoasourceodrinkingwaternearby.ManystudieshavedemonstratedthattheseedrainbeneathperchesissignifcantlyhigherthaninnearbysiteswithoutperchesWillsonCrome1989Nepstadetal1991Guevaraetal1992McClanahanWole1993DebuscheIsenmann1994.ThisPhoto23.PiedimperialpigeonsDuculabicoloraresummerbreedingmigrantstotheWetTropics.Theyspendtheirnon-breedingseasonintheorestsoPapuaNewGuinea.TheyarriveintheWetTropicsromlatewintertomidspring.Whilethebulkothemigratorypopulationnestsonislandsclosetomainlandtheytravelbetweenislandnestsitesandmainlandrainoresteedingsitesandareveryefcientandimportantseeddispersers.PhotoD.Pople. 52RepairingtheRainforestisbecausemostregurgitationanddeecationoseedsbyrugivorousbirdsoccurswhentheyperchorimmediatelyatertheytakeoratherthanduringightGuevaraLaborde1993.SeeddispersalisotenlimitedbytheavailabilityoperchtreesratherthanbythenumberopotentialdispersersCorlett2002andtreesbecomemoreattractiveorunctionalasperchtreesoncetheyexceedfvemetresinheightTohetal1999.Thearchitectureotreesandtheirpotentialtoprovideperchsitesareimportantconsiderationsintheselectionospeciesorplantinginarestorationproject.StructurallycomplexvegetationhasalsobeendemonstratedtobemoreattractivetoseeddispersingbirdsWunderle1997.Inadditiontoprovidinganarrayoperchingsitesandabundantanddiverseeshyruitsstructurallycomplexvegetationalsoprovidesmoresae-sitesreugesrompredatorsandalternativeoodresourcesorpartialrugivores.Photo24.Thesuperbfruit-pigeonPtilinopussuperbusisasmallcolourfularboreallivingentirelyintreespigeonwhichfeedsalmostexclusivelyonfruitmainlyinlargetrees.Theyhavealargegapewhichallowsthemtoswallowlargefruits.PhotoM.Trenerry.Restoringmultiplerainorestunctionsrequiresmultiplerainorestspecies.RatherthanocusingontaxonomicdiversityperseaocusonunctionaldiversitywouldappearappropriatewhenselectingrainoresttreespeciesorrestorationAertsHonnay2011.Whereasgeneralbiodiversitymeasuresarebasedontaxonomyspeciespresenceorabsenceunctionaldiversityentailswhatorganismseectivelydoinanecosystemplanttraits.Theselectionorelevantplanttraitsintherestorationorainorestecosystemsshouldemphasiseunctionalandsuccessionaltraits.Theseincludeseeddispersalpollinationtreearchitecturelightrequirementsheightgrowthandvigourtraitsorexample. RepairingtheRainforest5311.PHENOLOGYSeasonalrhythmisabasiccharacteristicolie.Phenologyisconcernedwiththetemporalpatternorecurringeventssuchasfoweringruitingandleafushing.Thestudyoplantphenologyprovidesknowledgeaboutthepatternsoplantgrowthanddevelopmentaswellastheeectsotheenvironmentonfoweringandruitingbehaviour.Floweringisoteninitiatedinresponsetochangesinphotoperiodtherelativelengthsolightanddarkperiodshoweverdaylengthisonlyoneoseveralcuesaectingtheregulationandtimingofowering.Otherpathwaysmayincludetemperaturetriggersortheinternalproductionoplantsubstancesparticularlysugarsandtheplanthormonegibberellin.Plantagenutritionalstatusandarangeoenvironmentalconditionsalsointeractintheprocess.Thereorethetransitiontofoweringatboththeindividualandorestcommunityleveliscomplexandinvolvestheconvergenceomultiplesignalsontotheplantsfoweringgenecircuitry.ThiscomplexityisprobablyundamentaltoevolutionarybethedgingonthepartoplantsChildsetal2010.Thetimingintensityanddurationofoweringdictatethesuccessoaplantsreproductivecycleandinturnthesuccessothoseanimalsrelyingontheplantresourcesresultingromthisprocesssuchaspollennectarandruit.MosttropicalrainorestsshowmarkedseasonalrhythmsofoweringandruitingDewBoubli2005.TheWetTropicsenjoysdistinctwetanddryseasoneachyearapatternthatisrefectedinthefoweringBoulteretal2006andruitingWestcottetal2005phenologiesotheregionrainorests.Thismarkedseasonalrhythmpotentiallyresultsinaboomandbustoreastandamineenvironmentormanyrainorestconsumerorganisms.Germinationinrainorestsshowsageneralcommunity-widepeakattheonsetowetseason.Althoughthereissomelevelocontinuousrainorestfoweringandruitingactivitythroughouttheyearthereareagreaternumberospeciesandhigherintensitiesofowerandruitavailabilityexperiencedatcertaintimesotheyear.SeveralpredictabletrendsinpeaktimesorfoweringandruitingareobservablewithaverygeneralrulebeingthatpeakruitingtimesprecedetheoptimaltimeorgerminationJanzen1967Frankieetal1974Primack1987.THESEASONALRHYTHMOFFLOWERINGThepeakinrainorestfoweringintheWetTropicsgenerallyoccursattheendothedryseasonandthebeginningothewetseasonOctoberandNovember.Thispatternisoundortreesshrubsandvines.Peakfoweringnearthebeginningothewetseasoniscoincidentwithapeakoinsectabundancewhenpollinatorsarepresumablymostnumerous.ItisinterestingtonotethatBoulteretal2008oundthatvinesingeneralappeartohaveaverystrongseasonalpatternwithlowdryseasonfoweringMaythroughtoAugust.WhilegreaternumbersospeciesandhigherintensitiesofoweringisexperiencedromtheendothedryseasonthroughthewetseasonacrosstheWetTropicsforathereisstilllowerintensityfoweringactivityoccurringcontinuouslythroughouttheyear.THESEASONALRHYTHMOFFRUITRIPENINGTheavailabilityoriperuitalsovariesseasonallywithpeaksinruitproductiontendingtocoincidewithrainallpeaks.Themoreseasonaltherainallthelargerthedierencebetweenthepeaksandtroughsoannualruitproduction.Leantimesorruitconsumingaunatendtooccurattheendothewetseasonandthebeginningothedryseason.Duringperiodsoscarcitycertainplantproductsreerredtoaskeystoneresourcesactasdisproportionallyimportantmainstaysotheprimaryconsumercommunity. 54RepairingtheRainforestOntheuplandtablelandareasotheWetTropicsthegeneralseasonalrhythmotherainorestisoutlinedinTable10.TheaveragenumberospeciesperhectaredroppingsignifcantamountsoruitandseedpeaksbetweenOctoberandJanuarywhilethereisaseveredepressioninMaythroughJuly.Theorestsruitingrhythmisdominatedbycanopytrees.UnderstoreytreesandshrubstendtoruitinMayandJunewhencompetitionoranimaldispersersisminimal.Wind-dispersedplantsripenruitbetweenSeptemberandDecemberpossiblytakingadvantageotheseasonopartialleaessnessinsomecommunities.Larger-seededplantstendtodropruitinMarchandApril.ThereisonlyonepeakseasonoseedgerminationatthebeginningothewetseasoninNovemberthroughJanuary.Theseedsomostplantswhichdropruitlateinthewetseasonorinthedryseasondonotgerminateuntilthebeginningotheollowingwetseason.Atlowerelevationsthepatternsoruitingaresimilarhoweverthereisashitinthetimingothepeaksandtroughs.Crome1975oundthatintheMissionBeachareaorexampletheleanseasonextendedthroughtheJanuarytoMayperiodwhileruitabundanceincreasedromJuneJulytoapeakbetweenAugustandSeptemberandthendeclinedtoDecember.OnthelowlandstheperiodoresourcescarcitybetweenAprilandJulycorrespondswiththedepartureomigratoryspeciessuchasthePiedimperial-pigeonDuculabicolorandtheMetallicstarlingAplornismetallicaandwithreportsostarvingcassowariesandwithreportsohighlevelsomortalityorpoorconditioninotherrugivoresDennisMarsh1997.Table10.TheseasonalrhythmofrainforestfruitfallontheuplandtablelandsoftheWetTropicsFruitandseedpeaks-OctoberthroughJanuarymid-springmid-summerpeakSeveredepressioninfruitandseedproduction-MaythroughJulylateautumnmid-winterdepressionTheorestsruitingrhythmisdominatedbycanopytrees.Understoreytreesandshrubs-MayandJuneendautumnstartwinterWind-dispersedplantsripenfruit-SeptemberthroughDecemberspringearlysummerLarger-seededplantstendtodropfruitin-MarchandAprilautumnPeakseasonofseedgermination-NovemberthroughJanuarylatespringmid-summer-beginningothewetseasonFloweringalsopeaks-nearthebeginningowetseasoncoincidentwithapeakoinsectabundancewhenpollinatorsarepresumablymostnumerous. RepairingtheRainforest55Severalotherpredictabletrendsoccurregardingruitanditsseasonalavailability.Canopyruitstendtobeproducedinlargercropsandaremoreseasonalthanruitsintherainorestunderstorey.Smallseededearlysuccessionaltreestendtohavemoreextendedruitingperiodsbutsmallerdailyruitcropsthanlatersuccessionaltrees.Inadditiontothiscommunityorhabitatlevelovariationthereareannualvariationswithinspeciesinthesizeoruitcropsandthetimingoruitproduction.Treeswhoseruitingpatternshavebeenobservedoverseveralyearsusuallydonotproducesimilar-sizedcropseveryyearandindividualplantsotenskipyearsbetweenruitcropsCrome1975.KEYSTONEPLANTRESOURCESInmanytropicalrainoreststhereseemtobeaewplantsthatregularlyproducenectarruitpollenseedsorowersduringtheannualperiodogeneraloodscarcity.TheproductsotheseplantshavebeentermedkeystoneplantresourcesTerborgh1986a1986b.TheyareimportantmainstaysoranimalsthatconsumethemGrifths1972Howe19771984Terborgh1986a1986bandtheirabundancelargelydeterminestheconsumercommunityscarryingcapacityatasite.ManyfgspeciesFicusspp.andanumberoearlysuccessionalplantsaremajorkeystoneplantresourcesintheWetTropics.Photo25a.ClustergsFicusvariegataareeasilyrecognisedbythelargeclustersogsthatareborneonshortbranchesothetrunkcauliforousandromtheirmainbranchesramiforous.Thesegschangeromgreentoredastheymature.Thistreeisanimportantkeystoneoodsourceoravarietyorainorestanimals.Figshaveanobligatemutualisticrelationshipwiththeirspecies-specicpollinatingwasps.Thegruitisanenclosedinforescencesometimesreerredtoasasyconium-anurn-likestructurelinedontheinsidewiththegstinyfowers.PhotoCampbellClarke.FigshavebeenrepeatedlyidentifedasparticularlyimportantShanahanetal2001Westcottetal2005keystoneTerborgh1986borattractivetoaverywidearrayodispersersCoates-EstradaEstrada1986Lambert1989Kitamuraetal2002.TheimportanceofgsmaybeduetotheirspatialandtemporalubiquityasaruitcropTerborgh1986bWestcottetal2005andtotheirhighnutritionalvalueOBrienetal1998.IntheWetTropicsfgsattractamuchwiderarrayoseeddispersingaunathananyotherplantgroupandhaveparticularlyhighvisitationratesWestcottetal2008.Photo25b. 56RepairingtheRainforest12.LANDSCAPEECOLOGYLandscapeecologyisthestudyospatialvariationandpatternodistributionocommunitiesandecosystemstheecologicalprocessesthataectthosepatternsandchangesinthesepatternsandprocessesovertime.Theprinciplesolandscapeecologyareincreasinglyrecognisedasameansoimprovingnatureconservationoutcomes.Natureconservationhasbeengraduallychangingitsocusromsiteprotectiontowardsconservationoecologicalnetworksincludingthewiderlandscape.Themainunctionalaspectolandscapeecologyisconnectivityanditsimportanceorboththedispersalandpersistenceopopulations.Anecologicalnetworkcanbeconsideredtoconsistothreebasiccomponents1.Coreareas-largeexpansesorainorestwherethehabitatrequirementsowildliespeciesareulflledandviablepopulationscanbesustainedinthelong-term.2.Corridors-unctionalecologicallinkagesorconduitswhichenabledispersalandsmaller-scalemovementsowildliespecies.3.Restorationareasareaswhereecologicalrestorationwillimproveunctionandresilienceolandscapesandconnectivity.LANDSCAPERESILIENCENaturalecosystemshaveautopoieticsel-creativecapacitiestoorganiseregeneratereproducesustainadaptdevelopandevolveWestraetal2000.Disturbanceswhoseextentintensityorrequencyisoutsidethenaturalhistoricalrangecanunderminetheautopoieticcapacitiesoasystem.ResiliencewasdefnedbyHolling1973asthecapacityoasystemtoabsorbtheeectsodisturbancesbyregainingormaintainingitscharacteristicstructuralcompositionalandunctionalattributesorinotherwordswithoutchangingintoaundamentallydierentecologicalsystem.SimilarlyWalkeretal2004havedefnedresilienceasthecapacityoasystemtoabsorbdisturbanceandreorganisewhileundergoingchangesoastostillretainessentiallythesameunctionstructureidentityandeedbacks.Aresilientecologicallandscapeisonethatcanwithstandshocksandrebuilditselwhennecessary.Naturalsystemsarecharacterisedbyenvironmentalthresholdsthaticrossedmayleadtolarge-scaleandrelativelyabruptshitsinstateincludingchangesinecosystemprocessesandstructureKnowlton1992Folke2006.Onceathresholdiscrossedandashitinstateorakeyprocessoccursitmaybedifcultorevenimpossibletoreversetheshit.FactorscontributingtoecologicalresilienceincludeBiologicaldiversityEcologicalsystemswithhighbiologicaldiversitygenerallyhavegreaterinherentresiliencelargelybecausetheyhavemorediverseresponsesandcapacitiesavailabletothemwhichcanprovidethebasisoradaptationMcClanahanetal2002.DiversityohabitatsalsoincreasesthelikelihoodosomehabitatsbeingmoreresilienttoimpactsromparticularstressesordisturbancesMcClanahanetal2002.ConnectivityThecapacityonaturalsystemstorecoverateradisturbanceortoreorganiseintheaceoneworintensifedpressuresdependstoalargeextentontheabilityoplantandanimalpopulationsandecologicalprocessestodisperseormoveacrossthelandscape.RefugiaAreaswithinthelandscapewhereecosystemsarebueredrompressuresordisturbances RepairingtheRainforest57thatwouldotherwiseresultinreducedresilience.Reugiaserveassecuresourceareasorthereplenishmentodisturbedpopulationsandassteppingstonesormaintainingpopulationconnectivityacrosslargerscales.Importantcriteriaoreectivereugiaincludeadequateextenttoprovidesufcientsourcepopulationsandinclusionoadiverseandcomprehensivesampleomanydierenthabitattypes.Conservingorcreatinggreaterlandscapeconnectivitybetweenareasrichinbiodiversityinconjunctionwithreugiaprovidesgreateropportunitiesorspeciesandecologicalprocessestorecoverre-establishandrelocateortoadaptandevolve.Ecosystemresilienceandstabilityinadevelopingandeverchangingrainorestrestorationsitedependsonthediversityoormandunctionotheconstituentandcolonisingspecies.SincegroupsocloselyrelatedspeciestendtooccupysimilarnichesFutuyma2010Wiensetal2010itispossiblethatasenvironmentalconditionsandresourceavailabilitychangerestorationplantingscomposedospeciesthatencompassabroaderrangeonichesmoredistantlyrelatedspeciesmaybebetterpositionedtomaintainecosystemunctioningbecauseothedierentialspeciesresponsestothisvariationYachiLoreau1999Fox2010.LANDSCAPECONNECTIVITYThebestresponsetothethreatsohabitatlossanddegradationistoretainorrestorestrategicconnectionsbetweenhabitatremnants.Elementsoalandscapecorridorincludedispersalcorridorssuchascorridornetworksandhabitatcorridorsandecologicalcorridorswhichocusonlandscapepermeabilityorecosystemprocesses.Inthelate1800sscientistsnotedthatislandscontainewerspeciesthancontinentallandareasoequalsize.ThisobservationeventuallyledtotheormaldevelopmentothetheoryoislandbiogeographyMacArthurWilson1967.Manyotodayslandscapesaredividedintoisland-likepatchesthataredecreasinginsizeandbecomingmoreisolatedinaseaohumandevelopment.HabitatpatchesdisplaysomesimilaritieswithislandsandanumberospatialprincipleshavebeendevelopedbasedonislandbiogeographytheoryLargeareassustainmorespeciesthansmallareasNumeroussmallpatcheswillhelpsustainregionaldiversityTheshapeofapatchcanbeasimportantasitssizeFragmentationreducesdiversityIsolatedpatchessustainfewerspeciesthancloselyassociatedpatchesSpeciesdiversityinpatchesconnectedbycorridorsisgreaterthanthatofdisconnectedpatchesAnincreaseinstructuraldiversityincreasesspeciesdiversityAhighdiversityofplantspeciesassuresagreaterdiversityofwildlife.Themostimportantinsightthatollowedromthesetheorieswasthathabitatragmentationincreasesthevulnerabilityopopulationsbyreducingtheareaoavailablehabitatandlimitingopportunitiesordispersalmigrationandgeneticexchange.AsoriginallydefnedlandscapeconnectivityisthedegreetowhichthelandscapeacilitatesorimpedesmovementamongresourcepatchesTayloretal1993.Thisdefnitionemphasisesthatthetypesamountsandarrangementohabitatorlanduseonthelandscapeinuencemovementandultimatelypopulationdynamicsandcommunitystructure.Manyremainingpatchesorainorestnowoccurasragmentsacrosslandscapesdominatedby 58RepairingtheRainforestagriculturalandurbanclearings.Asaresultmanyspeciesonativewildlieareunabletotravelbetweenremnantragments.Thisisparticularlythecaseorthoserainorestaunawhicharerestrictedtolivingunderaclosedcanopyandareunableorunwillingtocrossareaslackingaclosedcanopy.Broadlytherearetwokindsolandscapeconnectivity-structuralandunctional.Structuralconnectivityreerstothespatialarrangementodierenttypesohabitatorhabitatpatchesinthelandscape.Itignoresthebehaviouralresponseoorganismsthemovementoorganismsortheuxoprocesses.Structuralconnectivityismeasuredbyanalysinglandscapepatternanddescribesonlythepatternsandphysicalrelationshipsamonghabitatpatchessuchascorridororinter-patchdistances.Itisreadilymeasuredwithavarietyolandscapemetricsdevisedtomeasurethedegreetowhichalandscapeisragmentedandtodescribethespatialconfgurationovegetationpatchestheirsizeshapeandisolatione.g.Gustason1998MoilanenNieminen2002.Functionalconnectivityreerstochangesinspatiallydependentbiologicalecologicalandevolutionaryprocesses.Itincreaseswhensomechangeinthelandscapestructureincreasesthedegreeomovementorowoorganismsthroughthelandscape.Thisdistinctionbetweenstructuralandunctionalconnectivityisnotatrivialone.Firstandoremosthabitatdoesnotnecessarilyneedtobestructurallyconnectedtobeunctionallyconnected.SomeorganismssuchasyinginsectsbatsandbirdsarecapableolinkingresourcesacrossanuninhabitableorpartiallyinhabitablematrixBlisleDesrochers2002.Ecologicalsteppingstonesproviderestingandeedingstationsthatenablethesaepassageogap-crossingorganismsacrosslandscapes.Ecologicalsteppingstonescanbeassimpleasthepreservingorcreationosuitableroostingorwateringplacesindeorestedlandscapes.Figure2OptionsforlinkingecosystemsRAINFORESTRESTORATIONImportantaspectsthatneedtobeconsideredinalandscape-scaleapproachtorainorestrestorationinclude1thesizeorestoredrainorestpatches2thedistancebetweenrainorestpatches3anyexistingorpotentialconnectionslinkingpatchesand4theabsenceobarrierstowildlieandespeciallyseeddispersermovementwithintheseconnections.Somepotentialadvantagesorwildlieorestoringrainorestcorridorsandenhancingecologicalconnectivityare1.Higherimmigrationrateswillmaintainspeciesnumberincreasepopulationsizepreventinbreedingandencouragetheretentionogeneticvariation.2.Foragingandhabitatareawillincrease.3.Theyprovideescaperoutesromthreatsandcoverormovementbetweenhabitatpatches.4.Accesstoamixohabitatsprovidesagreaterrangeoresourcesoveragreaterperiodotime.5.Animalshaveaccesstoreugiaromlargedisturbances. RepairingtheRainforest596.Enhancingecologicalconnectivityprovidesconduitsthroughwhichwildliecandisperseromareaswhichhavereachedmaximumcarryingcapacityandorcompetitionandrecoloniseotheravourablehabitatspotentiallyimprovingtheconservationstatusothepopulationassistswildlietoescapelocalorlonger-termseasonalchangesinenvironmentalconditionsallowswildlieaccesstopreviouslyseparatedpopulationswithwhichbreedingmaytakeplacebettermaintainingandpossiblyimprovinggeneticvariabilityallowsotherecologicalprocessessuchasseeddispersaltobeneftromanincreaseinwildliedispersalandallowsecologicalprocessestooperateatalandscapescale.Whererestorationplantingsareneededtore-establishhabitatconnectivityemphasisshouldbeplacedonplantingavouredwildlieoodplantstoprovideayear-roundoodsupply.Ahighproportionotheplantingsshouldincludethosespeciesthatruitoutsidenormalperiodsopeakabundance.TheseleantimespeciesarethosethatruitduringtheMarchtoJuneperiodwhenlowseasonalruitproductionismostlikelytoinducegreateranimalmovementandaneedorexpandedoragingranges.RelevantconsiderationsinthedesignorplanningoacorridorincludeThephysicalstructureothecorridorshouldbedesignedtominimiseecologicaledgeeectsCorridorsshouldbeestablishedtominimisecompetitionwithexoticandnativeinvasivespeciesCorridorsshouldnotallowlocalpopulationstobeoverwhelmedbyimmigrantsespeciallyinareaswithhighlevelsolocalendemismWherepopulationsaresmallandlackimmunitycorridorsshouldnotalloworthespreadoinectiousdiseasesTheuseulnessoestablishingandmaintainingacorridorshouldbeassessedagainstotheroptions.ForexamplewoulditbemoreeectiveandachievegreaterbiodiversityoutcomestoenlargeanexistingrainorestpatchRIPARIANCORRIDORSANDCONNECTIVITYItiswelldocumentedhoworestedriparianareasperormmanyimportantlandmanagementunctionssuchastheirabilitytotrapnutrientssedimentorpesticidestransportedromupslopeareas.Inadditionriparianbuersprovidemultiplebeneftsintermsobiodiversityandwaterregulation.AlthoughnarrowriparianstripsperormsomeecologicalunctionstherangeoenvironmentalbeneftsincreaseswiththewidthothevegetatedstreambankbuerFigure3.Widerripariancorridorsprovidegreaterhabitatareawithreducededgeeectswhilegenerallypromotingmoreopportunitiesorspeciesmovement.Widerripariancorridorscanacilitatestreammeanderingprovidingoverallhigherhabitatqualityanddiversity.DierentecologicalprocessesandecosystemunctionsoccuratdierentspatialFigure3andtemporalscales.SomegeneralrelationshipswithrespecttocorridorwidthcanbeinerredThelargerthespeciesthewiderthecorridorwillneedtobetoacilitatemovementandtoprovidepotentialhabitatthisisparticularlythecaseordeeporestorrainorestspecialistspecies.Asthelengthothecorridorincreasessoshouldthewidth.Shorterwidercorridorsaremorelikelytoprovideincreasedconnectivitythanlongnarrowcorridors.Acorridorwillgenerallyneedtobewiderinlandscapesthatotherwiseprovidelimitedhabitatorthataredominatedbyclearingandhumanuse.Corridorsthatneedtounctionordecadesorcenturiesshouldbewider.Someunctionsthatrequiresignifcanttimeincludedispersalorslow-movingorganismsgeneowandchangestorangedistributionduetoenvironmentalchangessuchasclimatechange. 60RepairingtheRainforestInsummaryrainorestconnectivityreersamongotherthingstothestructuralconfgurationorainorestedhabitatsorhabitatpatchesinalandscapemosaicthepermeabilityoalandscapemosaicordispersalandmovementospecifcrainorestspeciesthepresenceorabsenceobarriersorimpedimentstothenaturaluxowaterornutrientsinalandscapelandscapepermeabilitywithrespecttometa-populationdynamicsorainorestspeciesgeneowsamongstspeciesorainorestplantsandanimals.Landscapeconnectivityandbiologicalpermeabilitycanbeincreasedthroughoutthelandscapematrixandatdierentspatialscalesthroughthepromotionolinearwildliecorridorslinkingexistingrainorestpatcheslargermoreextensivee.g.whole-o-catchmentscalerainorestedcorridorsestablishingmaintainingorexpandingrainorestpatchestoserveassteppingstonesorparticularmobilespeciessuchasbirdsspecialhabitatlocationsthatunctionasreugianetworksorainorestedcorridorsthroughoutthelandscapealongtheriparianzoneowatercoursesinter-connectingareasohighconservationvalueandstrategicconservationimportance.FRAGMENTATIONANDEDGEEFFECTSForestragmentationoccurswhenanexpanseoorestisbrokenandsubdividedintosmallermoreisolatedareasoorest.Fragmentationoaorestisbadormanyreasons.FragmentationreducesthetotalareaoorestincreasesisolationamongpopulationsassociatedwiththeorestragmentscreatesartifcialedgeswhereunmodifedhabitatabutsdisturbedhabitatFigure3.Theprogressiveadditiveincreaseinecologicalfunctionsprovidedbyanincreasingwidthofriparianrainforest.Anincreaseinecologicalfunctionsandanincreaseinself-sustainabilitywithincreasingwidthisafeatureofwildlifecorridorsingeneral. RepairingtheRainforest61increasesvulnerabilitytoinvasionbynon-nativespeciesresultinginanincreaseinnewhabitatAndren1994Paton1994LauranceBierregaard1997decreaseshabitatvaluealongorestedgeswellbeyondtheactuallossoareaedgeeectsundamentallyaltersthecommunityandpopulationdynamicsorsurvivingspeciesLaurance2002.Eachothesechangesaectshabitatsuitability.Thesmalleranareatheewerindividualsandspeciesitcancontain.Themoreisolatedapopulationthelesschancethatimmigrantswillrescueitromcatastrophes.Abruptorestedgesallowtheinvasiononon-nativealienspeciesandaltersmicroclimaticconditions.Forestragmentationthereoreexertsitseectsthroughbothhabitatlossandhabitatisolationwhiletheedgeeectsassociatedwithorestragmentationcanmodiytheenvironmentalconditionsoaorestragmentorsubstantialdistancesromtheedgeitsel.Edgeeectsaremajordriversochangeinmanyragmentedlandscapes.Howeverthestrengthoedgeeectsdiminishesasonemovesdeeperinsideorests.ThreeactorsaectingartifcialorestedgeshavebeensummarisedbyMurcia1995asabioticeectsdirectbiologicaleectsandindirectbiologicaleects.ABIOTICEDGEEFFECTSAbioticedgeeectsinvolvechangesintheenvironmentalconditionsthatresultromproximitytoastructurallydissimilarhabitatmatrix.Inhuman-ragmentedrainoreststheragmentsareusuallysurroundedbyamatrixolowbiomassandlowstructuralcomplexitysuchaspasturesorcroplandsoraroadpavementorahousingestate.Dierencesinstructuralcomplexityandbiomassalsoresultindierencesinmicroclimate.Comparedtoarainorestcropspasturesandinrastructureclearingsallowmoresolarradiationtoreachthegroundduringthedayandhigherre-radiationtotheatmosphereatnight.Consequentlytemperaturesinpasturecropsandothertypesoclearingsaregenerallysubstantiallyhigherthaninanadjoiningrainorestragmentanddailytemperaturesuctuatemuchmorewidely.Theenvironmentundertherainorestcanopyincontrastiscoolermoisterandmoreuniorm.Thedierenceinmicroclimatebetweenthetwosidesoanedgeislikelytocreateagradientotemperatureandmoistureromtheorestedgetotheinteriorotheragment.Lightintensitylightwavelengthsairtemperatureairmoisturesoilmoistureandairmovementcanvarygreatlybetweentheedgezoneandtheinterioroarainorestragment.DIRECTBIOLOGICALEDGEEFFECTSDirectbiologicaleectsinvolvechangesintheabundanceanddistributionospeciescauseddirectlybythephysicalconditionsnearaorestedge.Forexampledesiccationwind-throwandplantgrowthandaredeterminedbythephysiologicaltolerancesospeciestotheconditionsonandneartheedge.Changesinthephysicalenvironmentcausedbyedgesmaytherebydirectlyaectrainoreststructure.Thecreationoanedgeincreasesincidentlightwhichinturnpromotesthegrowthocertainspeciesresultinginsomerainorestspecieshavinglowerdensitiesorbeingabsentneartheedgewhileotherswhichareavouredbythesemodifededgeconditionsshowhigherdensities.ThephysicalenvironmentcanalsoaectrainoreststructureinazoneneartheedgebycausinganincreaseintreemortalityasaresultowindthroworromthegrowthodensesmotheringvineclimbertowersLauranceBierregaard1997.INDIRECTBIOLOGICALEDGEEFFECTSIndirectbiologicaleectsinvolvechangesinspeciesinteractionssuchaspredationparasitismcompetitionherbivorypollinationandseeddispersal.Edge-drivenchangesintheorestenvironmentandinoreststructuremayaectthedynamicsospeciesinteractionsneartheedge.Forexamplethe 62RepairingtheRainforestedgeeectonlightavailabilityandontheabundanceoherbivorousinsectsmayinitiateaseriesocascadingeectsthatcanspreadacrosstheecosystemthroughspeciesinteractionsMucia1995.Photo26.AnexampleofrainforestfragmentationontheAthertonTableland.Someofthelargerblocksofrainforestarelinkedbylinearwildlifecorridorsandmanyfragmentsaresmallandisolated.Inafewlocationsfragmentsareclusteredandhavethepotentialtoactasfunctionalconnectivitysteppingstones.PhotoK.Kupsch.Predictionstakenromthestudyoislandbiogeographyhavebeenextrapolatedtopredicthownumbersospecieswithinhabitatragmentswilldecreasewithincreasingisolationanddecreasingragmentsize.Howeverrainorestragmentsaredierentromtrueislandsinseveralways.RainorestragmentationalsoleadstoanincreaseinnewhabitatwhichcauseschangestotheoldparticularlyontheboundarybetweenthetwohabitatsAndren1994.ThereorethereisadecreaseincorehabitatbeyondtheactuallossoareaYahner1988.TheboundaryoredgeinahabitatragmentiswindiersunnieranddrierthantheinteriorandhasagreatervarietyomicrohabitatsBierregardetal1992.Studiessuggestthatedgeeectsormanyvertebratespeciesusuallyoccurwithinazoneextendingupto50metresromanedgePaton1994butedgeeectsandtheirzonesoinuencearedierentordierentspeciesYahner1988LauranceBierregaard1997NevilleBlack1997.Generalistspeciesthatthriveonedgesanddispersewellatthescaleoragmentationmaybecomeexcessivelyabundantattheexpenseootherspeciesinaragmentedlandscape.Thelengthotheedgerelativetothesizeotheinteriormaythereorehavealargeeectonthespeciesrichnessoahabitatragment.Themagnitudeoedgeeectsinarainorestrestorationprojectcanbemoderatedtosomeextentbytheappropriateselectionotreespecieswithedgesealingcharacteristics.Edgesealingplantspecieshavecharacteristicssuchasanarchitectureconsistingoanoverhangingcanopyobranchesthatgrowtowardsopenspaceorspeciesthatmaintainleaybranchesdowntheirtrunkswhenexposedtoulllight.Edgesealingplantsalsoincludelowgrowingspecieswithadenseshrubbyhabit.Insomecircumstancesplantingasimpledenseastgrowingtallwindbreakadjacenttoarainorestrestorationplantingmayalsohelpamelioratemanyotheadverseecologicaledgeeectimpacts.Overhangingcanopiesnotonlyoeramoreaerodynamicproflethatcanreducewinddamagebuttheyalsoactasanumbrellathatshadowstheedgeunderstoreybueringitromtheconditionsexertedbythenon-rainorestmatrix.EdgesealingcanreducetheadverseeectsoopenedgesbyreducinguctuationsintemperaturemoisturewindandothermicroclimateattributeswhilealsoreducingtheabilityoweedspeciestogerminateandspreadseealsoChapter16. RepairingtheRainforest6313.GENERALRESTORATIONPRINCIPLESDERIVEDFROMTHETHEORYThischapterattemptstosynthesiseandsimplifymanyofthekeypointsandconceptsdiscussedinthepreviouschapters.Thenextpartofthisbookwillthendescribethepracticalon-groundapplicationofthesegeneralecologicalconceptsandprinciplesindesigningandundertakingrainforestrestorationprojects.Althougheverysiteisdifferentandeverysitehasitsownuniquearrayofconstraintstheadoptionofthefollowingprincipleswhicharederivedfromtheconceptsdescribedinthepreviouschaptersshouldnotonlyincreasethebiologicaldiversityofanareabutalsohelptorestoreitsecologicalfunctions.1.Preserveandprotectexistingpatchesofrainforest.Existingrelativelyintactrainforestecosystemsarethekeystoneforconservingregionalbiodiversityandprovidethebiotaandothernaturalmaterialsneededfortherecoveryofimpairedsystems.Rainforestrestorationisacomplementaryactivitythatwhencombinedwithprotectionandconservationcanhelpachieveoverallimprovementsinlandscapehealth.2.Thedefningcharacteristicoarainorestapartromitsbiologicalcomplexityisitsclosedcanopy.Theestablishmentofaclosedcanopynotonlyshadesoutmostunwantedinvasiveweedspeciesbutimportantlyitcreatesthemoistbufferedmicroclimatewhichenablestheestablishmentandgrowthofahugediversityoflifeformsapartfromtrees.Thesooneraclosedcanopycanbereinstatedthesoonermanyofthefunctionsofarainforestcanbegintotakeshapeandthesoonercostlyandtimeconsumingweedmaintenancecanbeavoided.3.Therearemanydierentrainoresttypes.Thisvariabilityisexplainedtoalargeextentbythestateactorcontrolsoclimatesoilparentmaterialandtopographicposition.Withincombinationsofthesestatefactorcontrolstherearepoolsofspecieswithahighlikelihoodofbeingfoundtogetherbecausetheysharesimilarenvironmentalrequirementsandtolerances.ThesepoolsofpotentialbiotaformthebasisofthebroadspeciesselectionlistsprovidedinPart3ofthisbookChapters2122.OtherpotentialspeciesselectionconsiderationsmightalsoincludeToencourageseeddispersalselectspeciesattractivetofrugivores.Toencouragedevelopmentofwildlifepopulationsselectspecieswhichformmutualisticrelationshipswithanimals.Tofacilitatecolonisationofdispersallimitedspeciesplantpoorlydispersedspecies.Introducerarethreatenedandlocallyendemicspeciestoincreasetheirpopulations.Tocaptureasitequicklyandsuppressinvasiveweedsincludefastgrowingspecies.Torestoreverydegradedsitesconsiderspeciestolerantofpoorsoilsorspeciescapableofsiteremediation.4.Maturerainorestecosystemscompriseamosaicopatchesindierentsuccessionalstageswiththeractionothelandscapeinanyparticularstaterelativelyconstantoverlargetemporalandspatialscales.Thesizedistributionandreturnfrequencyofdisturbanceeventsandsubsequentrecoveryprocessesdeterminetoalargeextentthespatialscaleoverwhichamaturerainforestdevelopsindifferentlocations. 64RepairingtheRainforest5.Anyremnantpatchesorainoreststillremaininginthelandscapeprovideanidealstartingpointromwhichtostrategicallydesignrainorestrestorationprojects.Pre-existingrainorestremnantsprovideablueprintowhatitisthatshouldberestoredanidealsourceopropagatingmaterialhelpintheselectionospeciesadaptedtoaparticularsiteandprovideasourceoseedoreventualdispersaltotherestorationsite.6.Theidentifcationoreerencesitesareimportantbenchmarksorrestorationeorts.Reerencesitesareareasthatarecomparableinstructureandunctiontotheproposedrestorationsitebeoreitwasdegraded.Assuchreerencesitesmaybeusedasmodelsorrestorationprojectsaswellasayardstickormeasuringtheprogressotheproject.7.Seedmassisatraitthatoccupiesapivotalpositionintheecologyoarainorestspeciesasitlinkstheecologyoreproductionandseedlingestablishmentwiththeecologyovegetativegrowthandwiththeecologyodispersalandsuccession.Thesizeoaseedrepresentstheamountomaternalinvestmentinanindividualospringorhowmuchpackedlunchanembryoisprovidedwithbyitsparentwhenitissentotoendoritselandstartitsperilousjourneyinlie.Smallseedsarequickertoripenandcanbedispersedinashorterperiodotimewhilelargerseedshavemoreenergyreservesorgerminationandseedlinggrowthandproducelargermoreestablishedseedlingsatergermination.Ingenerallargerseededrainorestspeciesperormbetterunderadiversityoadverseestablishmentconditionsincludingdeepshadecompetitionlowsoilmoistureandnutrientsburialandherbivory.8.Sinceanimalsareimportantrainorestseeddispersersandplayanimportantroleinrainorestrestorationecologyitisimportanttoconsidertheruittraitsospecieschosenorplantingthatmakethemattractivetoanimaldispersers.Inadditionaproportionoplantspeciesthatareunlikelytobedispersedbywildliealsoneedtobeconsideredincludingspecieswithpropaguleslackinganimal-attractingeatureswind-dispersedspecieswhichareunlikelytoreachasitespecieswithlargeruitaswellasrareuncommonspecies.Therateatwhichadditionalplantspeciesenterarestorationplantingsiteisverydependantonthedistancetoavailablereliableseedsourcessuchasasizableintactrainorestpatchandontheextenttowhichpopulationsoseeddispersingwildliearepresentinthelandscapeandcapableotravellingtotherestorationsite.Lowerratesocolonisationareexpectedthemoreisolatedthesiteorwhereonlysmallrainorestragmentsremaininthelandscape.9.Theattractivenessoasitetoseeddispersingwildliewillbeanimportantdeterminantotherateatwhichtheybringseedsonewspeciestoarestorationsite.Structurallycomplexplantingsandsiteswithaclosedcanopyarelikelytobemoreattractivetoawiderrangeowildlie.Siteswithtalltreesarelikelytobemoreattractivethanthosewithonlyshortstaturetreesandthelargerthesizeotherestorationprojectthemoreattractivethesiteislikelytobe.10.Thematurecanopytreesthatcreatetherameworkoawelldevelopedrainorestgenerallyhaveseedswhichhaveashortviabilityandmosthavepoorlong-distancedispersalabilities.Reservesomaturephasespeciesdonotbuild-upinthesoilseedbankasdoshort-livedearlysuccessionalspecies.Mostalsohaveeitherlargefeshyruitsorlargewinddispersedwingedseedshelicopter-likeseedsdesignedorshortdistancedispersal.Fromapracticalperspectivethismeansthattheurtherarestorationsiteisromalargepatchointactrainorestthegreatertheneedtoincorporatethepoorlydispersedlatesecondaryandmaturephasecomponentothelocalforaintotheplantingdesign. RepairingtheRainforest6511.Themoreisolatedarainforestpatchthelessthechanceforrecolonisationofthepatchfromoutsideseedsources.Isolatedpatchesorainorestgenerallysupportewerspeciesthancloselyassociatedpatches.Restoringlandscapestructuressuchascorridorsandsteppingstonescanreduceisolation.Corridorsalsoincreasethechancesocolonisationoarestorationsitebyprovidingadefnedpathtore-establishpopulations.Speciesdiversityinrainorestpatchesconnectedbycorridorstendstobegreaterthanindisconnectedpatches.Corridorsmayalsoactasconduitsorgeneticexchangeamongsmallpopulationshelpingtomaintaintheirviabilityadaptabilityandresilience.12.Inareaswherenaturalrecolonisationisslowbecauseofisolationfromotherlargerainforestremnantsrestorationmethodswhichbypassthenormalsuccessionalsequencemayberequired.Insuchcircumstancesthespeciesusedshouldcomemostlyromlateandmaturesuccessionalstagesratherthanearlysuccessionalstagespecies.Themoreisolatedasiteromintactrainorestthemorelikelythedispersalandcolonisationprocesswillbedominatedbysmallseededreadilydispersedearlysuccessionalgeneralistspeciesandthemorelikelythesystemmaybelockedintoanarrestedearlysuccession.13.Becausemostrainforestplantspecieshaveveryshort-distancedispersalabilitiesitisrecommendedthatasageneralrulethatonlylocalseedsourcesareemployedinanyrainforestrestorationplanting.Theuseolocallysourcedseedisimportanttoconservelocaladaptationsi.e.characteristicsthatmakeindividualssuitedtotheirlocalenvironment.14.Ratherthanfocussingonspeciespersefocussingonfunctionaltraitdiversityoftreespeciesassemblagesmaybemoreappropriatewhenselectingtreespeciesforrainforestrestorationprojects.Astrongemphasisonunctionalratherthantaxonomicdiversityshouldprovideabetterkick-starttoacceleratingnaturalsuccessionalprocessesandprovidingagreaterarrayowildlieresourcesearlier.Itisalsovaluabletoocusparticulareortonincludingstronglyinteractivespeciesthatplayadisproportionateroleinmaintainingecosystemunction.15.Considerationofsuccessionalprocessessystemdevelopmentandtheroleofgapdynamicsinfosteringaprogressivesuccessionalsequenceandaprogressivebuild-upofbiodiversityandstructuralandfunctionalcomplexityisimportant.Inanaturalrainorestdisturbanceandsuccessionareconstantlymodiyingtheenvironmentandallplantsareatdierentstagesogrowthandmaturity.Thisisdierenttorestorationsiteswheremoststemsareinitiallyevenagedandsimilarinsize.Aninitiallowdisturbanceestablishmentperiodishighlydesirablehoweversinceamajorinitialaimisortheplantedtreestocapturethesiteshade-outcompetitiveweedspeciescreateaclosedcanopyandmodiyandmoderatemicroclimaticconditions.Onewaytopromotecontrolledsmallscalespot-wisenaturaldisturbanceistoincorporateapercentageoearlysuccessionalspeciesintoarainorestrestorationplanting.Byincorporatingthesespeciesspot-wisedisturbancesbecomeintegratedasanaturaleventollowinganinitialestablishmentlagperiod. 66RepairingtheRainforestPhoto27.Ater25yearsthisrestorationplantingatLakeBarrinehasdevelopedaorestfoorwithlargeamountsosmallwoodydebrisandathicklealitterlayer.Evidenceodynamicchangecanbegaugedromthedierentsizedlightgapsandobviousbrightsunfeckslichenencrustedtreetrunkstherangeodierentlieormsshade-pruningolowerbranchesdevelopmentoorestlayeringandthemixedtrunkdiametersizes.Howeverevenater25yearsthissitestillallowsgreaterlightpenetrationtoorestfoorthanwouldbeexperiencedinamaturerainoresthasstillnotdevelopedanyverylargetreesnoplankbuttressingorwoodylianesareevidentnotrunkorbranchhollowshaveormedepiphytesarenotyetconspicuousandthereisnoevidenceodevelopmentothicklargebranchesalltheseeaturestakealongtimetodevelop.PhotoBiotropicaAustraliaPtyLtd.16.Aforestismorethanthesumofitscomponenttrees.Faunalspeciesvaryconsiderablyintheirhabitatneedsbutingeneraltheoldertheregrowthvegetationthemorespeciesforwhichitcanprovidehabitat.Diversityandheterogeneityarethekeystoensuringarangeofanimalscanbeaccommodated.Thisprincipleisbasedontheobservationthatittakesmanydecadesorimportanthabitateatureslikeallentimbertreehollowsandlealittertodevelop.Similarlythestructuralcomplexityoarestorationplantingshouldalsodevelopandimprovewithage.Theretentionoasmuchstandingandallendeadwoodaseasiblewhenpreparingarainorestrestorationsitecanhelpby-passthislag-phaseasitprovidesready-mademicro-habitatsorbirdsinsectsreptilesandungi.Thiswoodymaterialinadditiontoactingasaninitialmulchlayercanalsoacceleratethere-establishmentonutrientcyclingandotherprocessesimportantortheecologyanddevelopmentosoil.Itmaybebenefcialtoconsiderusingartifcialhabitatsikeynaturalhabitatsareabsentorwilltakealongtimetorestoreorexampleartifcialnestingsitesorboxesandtunnelsandbridgestoassistthemovementowildlieacrossroadsorotherbarriers.17.Treesserveasimportantrecruitmentfociforseeddepositionbecausetheyprovideperchingandroostingsitesforseed-dispersingbirdsbatsandotheranimals.Understandinghowthepresenceoplantedtreesinuencesseeddepositionisacriticalfrststeptowardunderstandingtheeectivenessoplantedareasascatalystsosuccessionbecausethepatternsoseeddisseminationintoarainorestrestorationsiteultimatelyormsthebasisorthedistributionandabundanceoplantrecruitmentandsuccession. RepairingtheRainforest6718.Connectivityisimportantasitincreasestheunctionalsizeoecosystemsimprovesgeneticinterchangeandunderclimatechangeallowsspeciestomovetofndsuitablehabitatconditionsasconditionschange.Restorationprojectscanprovidemultipleunctionalbeneftsbymaximisingecosystemmosaicsandconnectivityincreasingpatchsizereducinghabitatragmentationprovidingmigrationcorridorsconservingsourcesoplantmaterialorpropagationandcolonistsconservingreugiaorsedentaryspeciesreducingedgeeectsincreasingopportunitiesoradaptationtodisturbances.19.Improvedconnectivitycannotmakeuporlessoverallhabitat.Patchesoallsizescontributetohabitatorwildliebutlargerpatchescanalsosupportsomespeciesthatdontlikesmallpatches.Althoughconnectivityamongpatchesisimportantormanyreasonsincludinganimaldispersalandaccesstoresourcesandisparticularlyimportantinlandscapeswithlittlevegetationcoverandmanysmallisolatedpatchesimprovedconnectivitycannotmakeuporlesshabitatoverall.Thesinglemostimportantthingthatcanbedoneorwildlieinclearedlandscapesistoincreasetheamountonativevegetationtheycanuseashabitat.20.Riparianvegetationisideallysuitedasthebasisorawildliecorridorsystem.Therearemanybeneftsromre-establishingrainorestalongwatercoursesincludingGulliesdrainagelinesstreamsandriversormahierarchyonaturalcorridorsthroughthelandscapeRiparianhabitatssupportrichbiologicalcommunitiesandusuallyhaveahighlevelostructuralhabitatdiversityMostorest-dependentspeciesuseriparianvegetationandmostanimalsrequirewatertodrinkonaregularbasisVegetatedstripsarepresentlyretainedalongstreamstoprotectwaterqualityandorerosioncontrol.Usingthesameareaasawildliecorridorminimisesthelossoproductiveruralland.Photo28.Anexampleofalowlandrainforestripariancorridor.PhotoCampbellClarke.Photo29.Anintactrainforestborderinganuplandstream.PhotoTourismQueensland. 68RepairingtheRainforest21.Althoughbiggerisnotalwaysbetterwithinsimilarenvironmentsandconsistentwiththefundamentalsofislandbiogeographylargerareasofrainforestgenerallysustainmorespeciesthansmallerareas.Verylargeareasarealsoimportantastheyaremorelikelytopreserverarespecieslargepredatorsandorestinteriorspecies.Largerareahaveagreaterchanceohavingahigherdiversityohabitattypesandingeneraltendtobemorestableandsel-buered.Theresilienceornaturalrecoveryabilityoanecologicalsystemalsotendstobegreaterasitssizeincreases.22.Theshapeofarainforestpatchisimportant.Althoughtheidealshapedependsonthesurroundinglandscapeitisgenerallyacceptedthattheshapeofarainforestrestorationpatchshouldbedesignedtomaximiseinteriorhabitatandminimiseedge.Thelargertheproportionoedgethemorepervasivetheadversearrayoedgeeects.Longthincorridorsaregoodatcatchingimmigrantsanddirectingthemtolargerhabitatblocksbuttheydonotallowdistinctinteriorhabitatstodevelop.Manyspeciesowildliearerainorestinteriorspecieswhichavoidorestedges.Tomaintainthesespeciespatchesneedtobebothlargeandhaveahighareatoperimeterratio.23.Eventhoughitisdesirabletopreserveorrestorelargeareasofrainforestfragmentationofnaturalforestsexpandinghumanpopulationsandcostsprecludethisinmanyareas.Thenextbestoptionistopreserveorrestoremanysmallerareas.Becauseosubtlehabitatdierenceseachsmallareawillcontaindierentcombinationsospecies.Byrestoringandmaintainingseveralpatchesthelikelihoodoaspeciesbecomingextinctisreduced.Manysmallpatchesorainorestinanotherwiseheavilyimpactedlandscapewillhelpsustainregionaldiversity.24.Theaimofarainforestrestorationprojectshouldbetore-establishecologicalintegritytoadegradedsitebyrestoringnaturalprocessesandresiliency.Ecologicalintegrityreerstotheconditionorhealthoanecosystem-particularlythestructurecompositionandnaturalprocessesoitsbioticcommunitiesandphysicalenvironment.Anecosystemwithintegrityisaresilientsystemabletoaccommodatestressandchange.25.Restorationeffortsarelikelytofailifthesourcesofdegradationpersist.Torestorenaturalprocessesandinitiateprogressivesuccessionthereisaneedtoidentifyandremovethecausesthatimpedenaturalrecoveryprocesses.Itisessentialtoidentiythecausesodegradationandeliminateorremediateongoingstresseswhereverpossible.Haltingactivitiesthatcausedegradationorpreventecosystemorspeciesrecoveryshouldbeconsideredthefrstandmostcriticalstepinrestoration.26.Invasiveweedspeciescandirectlythreatenbiodiversitythroughcompetitionorindirectlythroughintroducingdiseasesorcauseotherecologicalproblems.Invasiveweedspeciesalsoincureconomiccostsandtheirmanagementisthemajorsitepreparationandon-goingmaintenancecostsinmostrestorationprojects.Weedsareparticularlyinuentialintheearlystagesoarainorestrestorationprojectandcanpreventarrestordivertthedevelopmentothedesiredoranticipatedsuccessionaltrajectoryatasite.Thesuccessoanytreeplantingislargelydependentuponcontrollingweeds.Sitepreparationisacrucialstageinthecontrolprocessasisaregularongoingmaintenanceregimeorsuccessulrainorestre-establishment. RepairingtheRainforest6927.Rainoreststructureandunctionarecloselylinkedandeortstore-establishtheappropriatenaturalstructurecanbringbackbenefcialunctions.Veriyingwhetherdesiredunctionshavebeenre-establishedcanbeagoodwaytodeterminewhethertherestorationprojecthassucceeded.28.Usepassiverestorationtechniqueswhereverpossibleandappropriate.Formanysitesthesayingtimehealsallwoundsapplies.Inmanyinstancessimplyreducingoreliminatingthesourcesodegradationandallowingsufcientrecoverytimewillbeenoughtoallowthesitetonaturallyrepairitsel.Itisimportanttonotethatwhilepassiverestorationreliesonnaturalprocessesitisstillnecessarytoassessthesitesrecoveryneedsanddeterminewhethertimeandnaturalprocessescanmeetthem.29.Monitorandadaptwherechangesarenecessary.Therearemanyreasonswhyrestorationeortsmaynotproceedasanticipated.Somelevelomonitoringotherestorationsiteisimportantorfndingoutwhethergoalsarebeingachieved.Itheyarenotremedialactionsoradjustmentsneedtobeundertaken.Thisprocessomonitoringandadjustmentisknownasadaptivemanagement. 70RepairingtheRainforestPART2.PRACTICE14.ECOLOGICALRESTORATIONThelossoorestinthepasthal-centuryisoneothemostprooundandrapidenvironmentalchangesinthehistoryotheplanet.ItsimpactonbiodiversityisautomaticandsevereSuchislikelytobetheworldo2100-ipresenttrendscontinue.Themostmemorableheritageothetwenty-frstcenturywillbetheAgeoLonelinessthatliesbeorehumanity.E.OWilsonTheFutureoLieAsanygardenerknowsthereisasustainedsenseosatisactionwhenyoucreatewithlivingplants.Whenyouundertakeecologicalrestorationitisgardeningonagrandscalegrandintermsospaceandtimeandendlessintermsothepaletteopermutationsyoumightcreate.Thegardenmaybehundredsohectaresandsomeindividualsothemyriadospeciesyoucouldplantmayconceivablyliveorathousandyears.Moreoveryourhandiworkwillprovidehomesormillionsocreaturesunwittinglygoingabouttheirdailyexistenceunawareothecreativehandsresponsibleorinitiatingthecomplexwebowhichtheyarenowapart.Ecologicalrestorationisasmuchacreativeartasascience.Butinanotherwayitismorethanboth.Whenyourestoreanecosystemyoutendtoobserveinterpretandutilisenaturalecologicalprocessessuchasdisturbancesuccessiondispersalandpollination.ThroughthisbondthetreeplanterdevelopsadeeperunderstandingoecologicalprocessesandagreaterinsightintotheWetTropicsenvironment.WHYRESTOREEcosystemrestorationcanbenefteveryoneandcanbemanagedorarangeoland-useincludingthetwoseeminglyopposedusesoagricultureandbiodiversityconservation.Thissectionexplainsthesebeneftsinthecontextowhereweliveandwhatwedo.MAINTAININGBIODIVERSITYBiodiversityoccursatdierentscalesandrestorationcanimprovebiodiversityatthesemultiplescalesNoss1990.Becauserestorationinvolvescreatingnewhabitatithelpstoensurethatlocalandregionalpopulationsoplantsandanimalsremainstableorincrease.Italsoreducesclimaticvariationbymoderatingthetemperatureandreducingevaporation.Thisenablesspeciestoutiliserestoredareasasreugiaduringperiodsoenvironmentalstressstemmingrombothnaturalandman-madedisturbancesseealsoChapter12.PROTECTINGECOSYSTEMSERVICESANDECOLOGICALCOMMUNITIESManyecosystemsandtheecologicalcommunitieswithinthemprovideessentialservicessuchascleanairandwaterandregulateecologicalinteractionssuchaspollinationanddispersal.TheseecosystemservicesareprovidedreeochargeandareoimmenseimportanceTEEB2010.PROTECTINGRAREANDTHREATENEDSPECIESANDCOMMUNITIESHumanspreerentiallyclearorestswhichareaccessibleandgrowonertilesoilsinareaswithanamenableclimate-so-callednon-randomdeorestationLauranceLaurance1999.Unortunatelythesecommunitiesalsotendtohaveveryhighbiodiversityvaluessoclearingresultsinadisproportionatelossospecies.Restoringplantspeciesandcommunitiesthatarenowrareorthreatenedisonewaytoimmediatelyimprovetheirconservationstatusinadditiontoprovidinghabitatoranimalsthatmayalsobethreatened. RepairingtheRainforest71RE-BUILDINGECOLOGICALCONNECTIVITYAwellconnectedlandscapeismoreresilienttoallormsodisturbancebecauseanimalsandplantshavetheabilitytomovethroughthelandscapeinsteadobeingrestrictedtoonearearagment.Continuousorestsandwatercoursesallowpollenseedsandgenestobedispersedmorereelyacrossthelandscapewithlesschanceoencounteringadispersalbarrier.PROTECTINGCATCHMENTSWatercoursesarelandscapelielines.Theyprovidewaternotonlyorecologicalprocessesbutalsoordomesticagriculturalandrecreationalneeds.Awell-vegetatedcatchmentintheWetTropicsprotectssoilandimprovesthequalityowaterthroughoutthelandscapeandcontributestothehealthotheGreatBarrierReeDevlinBrodie2005Hutchingsetal2005Brodieetal2012.AGRICULTURALPRODUCTIONRainorestrestorationcanprovidearangeobeneftstotropicalagriculture.Windbreaksshadeandshelter-beltscanimproveproductioninbothcroppingandgrazingsystems.RestoringriparianorestshasbeenshowntoreducerodentdamageinsugarcaneWilsonWhisson1993andmacadamiacropsWardetal2003.Weedsandsoilerosionarereducedwherethereisappropriatenativeorestcoverandmanylocaltreespeciesarehighlysuitedtosmall-scalearmorestry.VISUALAMENITYLandscapeswhicheaturewell-vegetatedstreamsandriversandpatchesonativevegetationaremorevisuallyappealingthanerodedandpoorlymanagedlandswithrankweedsandgrasses.Thisisakeyconsiderationinanareawheretourismisanimportantcomponentotheregionaleconomy.ACHIEVINGECOLOGICALFUNCTIONOurrainorestshaveacomplexityostructurespeciesandecologicalinteractionsthatissimplynotpossibletore-buildinashortspaceotime.Inasmallareatheremaybemanyhundredsoplantspeciesandonlyasub-setothesecanbeestablishedinarestorationplot.Nesthollowsmaytakeover200yearstoormGibbonsLindenmayer2002sopermanenthabitationbyanimalsrequiringtheseeaturescannottakeplaceuntilthesearecreated.Largehollowlogsonthegroundmayconceivablytakemanycenturiesmorethannesthollows.Orchidsandepiphytesrequireastablemicroclimateasdomostshade-tolerantspecies.Interactionsbetweenplantsandanimalscanbecomplexandrequireacombinationoactorswhicharealsotimedependent.Itisnotpossibletorestorethesecomponentsrapidly-theytakealongtime.Itishoweverpossibletoharnessnaturalorcesandassistnaturetospeedtheprocessosuccessionandrecovery. 72RepairingtheRainforestPhoto30.DonaghysCorridorisarainorestrestorationsiteontheAthertonTableland.ItlinksLakeBarrine498hatothemainrainorestmassioWooroonooran80000haaterover60yearsoisolation.Withinthreeyearsoplantingthiscorridor119speciesoplantshadbeennaturallydispersedandestablishedwithover40percentothesebeingdispersedromtherainorestedareasateitherendothecorridorplanting.Ananalysisodispersalmodeshowedthatover80percentothecolonistswereprimarilybirddispersedandcomprisedspecieswhoseruitswerebetween10-30mmindiameter.Largeruitedspecies30mmwererarecolonistsandalmostexclusivelyspeciesthatareprimarilydispersedbyspectacledfying-oxesPteropusconspicillatusTuckerSimmons2009.Priortotherestorationtheonlymammalsdetectedatthesiteweregrasslandrodentsandmice.WithinthreeyearstheserodentsweredisplacedbyrainorestspeciesasgrassandweedsbecameshadedoutwithinthecorridorareaandarainoreststructurebegantodevelopTuckerSimmons2009Paetkauetal2009.Aterbeingisolatedorover60yearsromneighbouringpopulationstwospeciesorodentsromLakeBarrinealreadyhadsucientgeneticvariationtodistinguishthemromtheWooroonooranpopulation.Basedonthisgeneticdatathestudydenitivelyshowedthatanimalsromonepopulationhadjoinedtheother.ThisoccurredwhenhybridswereidentiedwhoseparentshadoriginatedateitherendotherestoredcorridorPaetkauetal2009.PhotoL.Kazmeier. RepairingtheRainforest7315.PLANNINGThissectionocusesontheintegrationothetheoreticalcomponentsdescribedinPart1Chapters113.Thesechaptersprovidedabrieoverviewothetheoryorainorestrestoration.TheyprovidethebasisordesigningandimplementingrestorationprojectsintheWetTropics.Justasmuchothetheoryappliesbroadlyacrosstropicalenvironmentsthepracticeoutlinedherealsoappliesbroadlytotropicalrainorestrestoration.SITEANALYSISThehallmarkoagoodprojectisacommitmenttoplanning.Thefrststageintheplanningprocessinvolvesananalysisothesite.Thisisimportanttounderstandthelimitationsinherenttoasite.Thekeyinormationthatneedstobeconsideredincludesa.WhathavebeentheagentsfrequencyandintensityofdisturbancesonthesitePlantsandecosystemshavelearnedtoconstantlyadapttodisturbancesChapter6.Inallnaturalecosystemsdisturbanceisaregularandnecessaryeature.Howeverinthecontextorestorationmostdisturbanceresultsromhumanactivitiesandtheresultingdisturbanceandthetypeointerventionrequireddoesnotoccurinnature.Dierentdisturbancehistorieswillallaectthetypeandmagnitudeoappropriatesitepreparation.Siteswhichhavebeensubjectedtoahistoryointenseandregulardisturbancewillrequiresignifcantlymorepreparationthansiteswhichhaveonlybeenmoderatelydisturbed.Forinstancecattlemayhavegrazedasiteormanyyearsvehiclesmayhaveregularlytravelledoverthesiteasignifcantweedmayhavecoveredthesiteoraperiodotimeorinappropriatefremayhavekillednativevegetation.Identiyingweedsonthesiteandinthesurroundingareaprovidescluestotheintensityandnatureopastdisturbances.ForexamplesiteswhichhavebeenheavilygrazedareotencolonisedbySnakeweedStachytarphetasppSensitiveweedMimosapudicaandRatstailgrassesSporobolusspp.Ithereareweedswithlong-livedseedssuchasSickle-podSennaobtusifoliathiswillinuencetheapproachtositepreparationbecausesitesmayneedmultipleweedtreatmentsbeoretheyarereadyorplanting.Soilcompactionresultingromstockorvehiclescanbeovercomebydeeprippingsoilstoimproveporosity.Weedinvasioncanberemediatedbyrepeatedsprayingpriortoplantingtoexhausttheweedsinthesoilseedbank.Finallyifrescarsarepresentthereisachancethesitemayburnagainandsomeormoprotectionromutureburnswouldbeprudent.b.WhathasbeenthelevelofdisturbancetosoilphysicalchemicalandbiologicalRestorationplantingsarechallengingandplantgrowthpoorwheresoilsarecompactedorerodedoronsoilswithlimitednutrientswhichhavelostthebenefcialmicro-organismswhichaidinnutrientbreakdownanduptake.Asimplemethodtodeterminethelevelosoilcompactionistousesomeormogardenimplementtogaugehowdifcultitistopenetratethesoil.Icompactionisobviousthenitmaybenecessarytousemachinerytoovercometheproblembydeeprippingtoadeptho300millimetres.Thisgreatlyimprovessoilporosityandenhancesrootdevelopment.MostrainorestrestorationsitesintheWetTropicsarenotdevoidonutrientsandertiliserisusuallyonlyusedtoboosttheearlygrowthoindividualplantsratherthanasabroad-acreagriculturalapplication.Providedindividualseedlingsaresuppliedwithregularertiliseror12monthsaterplantingthereisnorequirementtoprovidenutrientselsewhere.Excessiveertiliserapplicationtothesesitesisotencounter-productiveasittendstopromoteweedinvasionandvigorousweedgrowth. 74RepairingtheRainforestc.WhatisthedistancetothenearestsourceofpropagulesandtheirdispersersItisnotpossibletorebuildthecomplexityorainorestlieormandstructurebyrestorationplantingalone.TorebuildthecomplexityoarainorestwerelyalmostcompletelyonthenaturalmechanismodispersalseeChapter10.Ourdecisionsregardingthemostefcientmethodtorestoreaparticularsitedependmainlyonrecognisingotherlimitationstodispersalanddistanceromasourceorainorestseeds.Openpasturelinearinrastructuresuchasroadspowerlinesandrailwaylineshumansettlementsanddamsallpresentman-madebarrierstoseed-dispersingwildlieandimposelimitationsonthelikelihoodosuccessuldispersalGoosem20002002.d.WhichecosystemwasformerlypresentonthesiteInChapter4thedierencesinrainoresttypeswasdiscussedandinChapter5theinuenceostateactorsonregulatingthetypeoecosystemwhichispresentatasitewasexplained.Togethertheseactorswilldictatethetypeoorestwhichshouldbetheaimorestorationinanyparticulararea.TheWetTropicsregionisortunateinthatpatchesoorestremaininmostpartsothelandscapeandthisallowsinerencestobemadeaboutthecompositionotheecosystemthatwaspresentpriortoclearing.Avisualsurveyothevegetationintheareaimmediatelysurroundingthesitewillprovideagoodindicationothosespecieswhichgrowwellintheimmediatelocality.InPart3othisbookisamapotheWetTropicsandlistsospecieswhichshouldbesuitableorplantinginaparticularlocality.Thistakestheguessworkoutoselectingspecies.Howeveritisstilluseultolookaroundyourlocalareaandobservewhichspeciesareprominentandwhichmightprovideapotentialsourceopropagatingmaterial.ThislocalknowledgewillenabletherefnementothegeneralspecieslistedinPart3oryourspecifcareaandspecifcsetsocircumstances.e.WhatarethenaturaldisturbancesorperturbationsthatneedtobeconsideredNewlyestablishedplantingshavelittleresistancetooodingdroughtfreorrost.FloodingresiliencecanbeimprovedbychoosingappropriatespeciesromthelistoriparianspeciesprovidedPart3andbyplantingseasonallyinundatedsitesimmediatelyatertheoodseasontoensureplantsarewellestablishedandcapableowithstandinginundationinsucceedingwetseasons.Converselythesiteshouldalwaysbeaccessiblesothatsupplementarywateringispossibleiadroughtperiodoccursduringthefrstyearollowingplanting.Ithesitehasbeensubjecttofreinthepastsomeormofrebreakshouldbeconsideredtoprotectthesiteromapossiblerecurrenceosuchanevent.DuringcoldseasonsontheAthertonTablelandsrostcankillsmallseedlingsparticularlyinriparianareasinthelowestpartsothelandscape.Ithesiteislikelytosuerrostdamageconsultwithlocalspecialiststodeterminewhichspeciesareappropriateorthatsite.FrosttoleranceisdiscussedurtherinChapter16intheriparianrestorationsection.f.WhatisthesitesecologicalrelationshiptothesurroundinglandscapeChapter12dealtwiththeconceptsocoreareascorridorsandrestorationareasandtheroleoeachinanecologicalnetwork.Connectivityandpermeabilitywerediscussedaswastheimportanceorestorationinenhancingtheviabilityandpersistenceospeciesacrossthelandscape.Arestorationsitesspatialrelationshiptoitssurroundinglandscapeinuencesthedecisiontochooseaparticularsiteinpreerencetoothersites.LocallysitesmaycontributetoconservationoaparticularspeciessuchasthecassowaryoranecologicalcommunitysuchasMabiorestorlittoralvine-orest. RepairingtheRainforest75Atadistrictscalesitesmaybeselectedtoenhanceconnectivitybetweenlargerainorestedragmentsinthelandscape.RegionallythesitemaycontributetoenhancingthequalityowaterdischargedontotheGreatBarrierRee.Siteswhichcanprovidemultiplebeneftsshouldbepreerredoverthosewhichoereweradvantages.g.WhatisthetargetotherestorationTheWetTropicsisrenownedoritsdiversityospeciesandcommunitiesmanyowhicharerestrictedbystateactorssometoparticularpartsothelandscapeorbyparticularhabitatrequirements.Restorationcanocusonimprovingthelong-termconservationocertainthreatenedspeciesandcommunities.Iaprojectaimstoincreasetheareaoathreatenedcommunitythenitisnecessarytoidentiythedominantspeciescharacteristicothevariousstrataothatoresttype.Somespeciesmayonlyestablishaterthereisashadeproducingcanopyinplaceisothisneedstobeactoredintoprojectplanningplantingandlogistics.Suchprojectsmayneedtobeactivelymanagedoramuchlongerperiodthanorrestorationprojectswithmoremodesttargets.Itheprojectisdesignedtopromotetheconservationoaparticularplantoranimalthenthespecifcneedsothatspeciesneedtobeaddressed.Foranimalsthismeansestablishingavouredoodplantsandtheparticularhabitateaturesrequiredtoensureaspecieshasaccesstoallitsessentialresourcestoenableittopersistatthesite.h.WhatresourcesarerequiredphysicalbioticandabioticintellectualfnancialcommunityThehallmarkoagoodprojectisacommitmenttoplanning.Itisvitaltounderstandalltheresourcesthatwillberequiredandtoensuretheseresourcesareinplaceatthetimetheyarerequired.Someresourcessuchasundingandasupplyothecorrectplantsrequirelongleadtimes.Physicalresourcesincludethepersonnelequipmentandconsumablesthatwillberequiredtocompleteallthetasksrequiredtoestablishandmaintainarestorationsite.Bioticandabioticresourcesaretheplantsandecologicalurniturethatwillbeneededtocompletearestorationproject.Intellectualresourcesaretheknowledgeandexpertisethatunderpinthedesignimplementationandmonitoringcomponentsoasuccessulproject.Financialresourcesarethoserequiredorlabourassociatedwithestablishmentandmaintenanceencingandotherpreparationcostssuchasplantsertilisermulchandherbicide.Communityresourcesmayincludevolunteerlabourtheprovisionolandorrestorationandacommitmenttoprotectsuchprojectsintotheuturebothromlandholdersandcommunitygroups.i.WhichrestorationmethodwillbethemostappropriateThereisarangeoapproachesavailabletorestorerainoresttoasite.Theollowingchapterdiscussestherationalebehindtheselectionoanappropriatetechniqueandthemethodologyinvolvedintheapplicationoeachdierentapproach.AllothemethodsdescribedintheollowingchapterareunderpinnedbythetheoreticalconceptsoutlinedinChapters1-13. 76RepairingtheRainforest16.RESTORATIONMETHODSTherearetwobasicapproachestorestoringrainoreststoareastheyonceinhabited.Passiverestorationlargelyreliesonnaturesrecuperativeabilities.Itinvolvesminimalinterventionandreliesalmostentirelyonnaturalmechanismstoprogressivelyrestoretheplantcommunity.Activerestorationontheotherhandinvolvesactiveinterventiontochangethenatureandrateosuccession.Themethodsdescribedbelowrepresentbothactiveandpassiveapproaches.RainorestrestorationisnowawelladvancedpracticeinnorthQueensland.ThecommunitytreeplantinggroupTREATTreesortheEvelynandAthertonTablelandswasestablishedin1982andthegroupsactivitieshaveallowedmembersthroughoutnorthQueenslandtodevelopandrefnerestorationapproachesbasedontheirsuccessesandailuresoverthirtyyears.TheemergenceoothertreeplantinggroupstheLandcaremovementCatchmentManagementgroupsandothercommunityorganisationshasaddedimmeasurablytorainorestrestorationknowledgeandcapabilityacrosstheregion.Thechoiceowhichspeciestoplantaswellaspropagationplantingandmaintenancetechniqueshaveallbeentrialledovermanyyearsandprovidesasolidinormationbase.ThecombinedexperienceoalltheseindividualsandgroupsledtothedevelopmentotherestorationtechniqueswhichwereoriginallydescribedinthefrsteditionothispublicationGoosemTucker1995andwhichhaveprovedtobestillrelevanttoday.Therearethreemainmethodsthatcanbeusedtorestorerainorestecosystems1.Naturalregenerationapassiveapproach2.Frameworkspeciesmethodanactiveapproach3.MaximumdiversitymethodanactiveapproachTheuseoeachdependsonavarietyoactorsbutthemostcriticalisthedistanceotherestorationsitetothenearestpatchonativerainorestvegetationandthenatureothevegetationbetweenthem.NATURALREGENERATIONAsthenamesuggeststhenaturalregenerationmethodreliessolelyondispersaltorestorenativeplantsandecologicalprocessestoasite.Althoughnoplantingisinvolvedotherinterventionsmayberequiredtomanipulateassistoracceleratethesuccessionalprocess.Theseotherinterventionsarealsotermedassistednaturalregenerationacilitationandsprayandrelease.Thismethodisotenappropriateorlocationsadjacenttoanexpanseoestablishedrainorestvegetation.Thefrststepistomanageanyactorslimitingnaturalregenerationsuchasstockgrazingfreandweeds.Excludingstockandfreisrelativelystraightorwardbutcontrollingweedsisamorecomplexproblemandrequiresanappropriatelydesignedstrategy.Someweedspeciesareabletoassistthenaturalregenerationprocessbecausetheyoeranattractiveoodresourcetorainorestseed-dispersingwildliesuchasbirdsAideetal2000Neilanetal2006Whiteetal2009.Thesebirdsmayalsoeedonruitsoundonrainorestmarginsandinsmallrainorestragments.Astheyvisitpatchesoeshy-ruitedweedssuchaslantanaortobaccobushSolanummauritianumtheydeecateseedseatenatothersitesParrottaetal1997Holletal2000Meinersetal2002.Inabandonedareaswoodyweedsotengrowtallerthanmostgrassesprogressivelyshadingoutthegrassesandcreatingthemicroclimateconditionsmoresuitableororest RepairingtheRainforest77plantstoestablishbeneaththemMeinersetal2002Whiteetal2009.HoweverbothtobaccobushandlantanaareDeclaredweedsinQueenslandLandProtectionPestandStockRouteManagementAct2002soitisneithersensiblenorlawultopropagatethem.Howeveroncetherecoveryprocessisunderwaytheseweedscanbemanuallycontrolledwhenrequiredleavingthedevelopingrainorestseedlingstocontinuetocapturethesite.Talldensegrasscoverismorelikelytohaltnaturalregenerationthanotherormsonon-allelopathicweedinestationseealsoChapter7.ItispossibletoassistnaturalregenerationthroughselectiveweedcontrolWoodordetal2000.ThisisespeciallythecasealongrainorestmarginswhereseedrainandnaturalregenerationwillbemostproductiveWhiteetal2009DennisWestcott2006.Bycontrollingweedsalongrainorestmarginsnativeseedrainismorelikelytogerminateandestablishallowingtherainorestmargintoadvanceintoareaspreviouslydominatedbyweeds.Whentreatingrainorestmarginswithherbicidetheobjectiveistocareullyeradicateonlytheweedsandtoavoidover-sprayingontodesirablenativeplants.Althoughweedcontrolcanbedoneatanytimenaturalregenerationismoreprolifciweedcontrolisundertakeninlatespring.ThemajorityolocalrainorestplantsproduceruitsbetweenOctoberandFebruary.Bysprayingweedsinspringtheextensiveseedallsothewetsummerseasonarenotcompetingwithweeds.Weedsarealsolikelytogerminateromthesoilseedbank.HowevermostothegerminatingweedswillbemembersoAsteraceaethedaisyamilyandwithsomeexceptionstheseplantsaregenerallyunabletocompetewithrainoresttrees.NaturalregenerationcanalsobeassistedbyerectingpercheswherebirdstypicallyrestbetweenightsHolletal2000Tohetal1999Harveyetal2004.Fence-linesareagoodexampleotheinteractionbetweenbirdsandperches.Mostcattletendtoavoidbarbedwirebutbirdsregularlyuseencesasperchessomanyseedsaredispersedintositeswherecattledonttrampleandgerminationcanoccur.Theresultovertimeisaence-linewhichotenresemblesanunmanagedhedgeHarveyetal2004.Atreeisthebestperchbecauseitoersasaerplacetooragetohideortobreedandasingletreeorasmallclumpcanbeaocalpointorregenerationasvisitingbirdsdepositseedsbeneath.IweedsarecontrolledbeneaththetreeandoritisencedoromstocktheseedswhichallhaveamuchbetterchanceoestablishingandregenerationismorelikelyHarveyetal2004.Thisisonewaytoovercometheproblemoagingshadetreesondairyandcattleproperties.Manysuchshadetreesarenowmoribundandhavebeendamagedbycyclones.Fencingthesetreesandallowingnaturalregenerationtooccurbeneaththemisaneectivestrategytorejuvenatepaddockshadetrees.ThistechniquedependsonanadjacentseedsourcetoprovidethenecessaryinputsoseedParrottaetal1997Wunderle1997.Itherearenonativetreesinthevicinityothesitethenitislikelythatregenerationwillbedominatedbyweeds.HoweveramongsttheweedstherewillalsobesomenativeplantspeciesandbyspecifcallycontrollingtheweedsmoredesirablespecieswillsurviveandsuccessioncancommenceWoodord2000.FacilitationtechniquesarewellsuitedtothesmallgulliesandstreamswhichoccuracrossagriculturalareasintheWetTropics.Allthatisrequiredtostartthesuccessiontowardsawoodyplantcommunityistoreleasethesiteromgrazingorcultivationpressure.Theencingowatercoursesisanimportantfrststepinreducingerosionandhasteningsuccessionandisagoodinterimmeasureuntilmoreactiverestorationapproachescanbeused. 78RepairingtheRainforestFRAMEWORKSPECIESMETHODTheframeworkspeciesmethodisperhapsthemostcommonrainforestrestorationtechniqueusedinnorthQueensland.SinceitwasdevelopedintheWetTropicsGoosemTucker1995thistechniquehasbeencopiedinotherpartsofAustraliaPeel2010andhasalsospreadtoIndiaMudappaandRaman2010andmanypartsofSouth-eastAsiaElliottetal2006Neideletal2012.Thebasisofthetechniqueistoestablishparticularmixturesofspecieswhichactasecosystembuildingblocksandattractseeddispersingwildlife.Itisthisprocessofnaturaldispersalthatisreliedupontoprogressivelyadddiversityoflife-formandspeciesGoosemTucker1995.BecausethismethodreliesonbothasourceofseedsandtheanimalswhichdispersethemitisonlyusefulwherethereisasourceofrainforestseedsclosebyandsuitesofvertebratescapableofdispersingthemTuckerandMurphy1997Moranetal2009.InastudyofseedlingregenerationinrestorationplantingsinnorthQueenslandWhiteetal2004recordedbetween20and50colonisingspeciesintenyearoldrestorationplantingswhichwerebetween600metresandtwokilometresfromthenearestpatchofrainforest.Exoticspecieswerethedominantcolonisers.Bycomparisonrestorationplotssituatedadjacenttorainforesthadbeencolonisedbyupto120newspeciesoverthesameperiodandexoticspecieswerenolongerpresent.Similarstudiesemphasisetheimportanceofrainforestseeddispersersandthediminishingdispersalofrainforestseedsasrestorationplantingsbecomemoreecologicallyisolated.Whereplantingsareclosetoastandingrainforesttheeffectsofseeddispersalarerapidandsustained.AsaplantingdevelopsfoodandforagingresourcesbirdandotheranimalvisitationincreasesandthenumberanddiversityofseedsbroughtinfromadjacentrainforestsalsoincreasesTuckerMurphy1997Elliotetal2008.InastudyatDonaghysCorridorarestorationsitenearLakeBarrineTuckerandSimmons2009recorded109newplantspeciescolonisingthesitethreeyearsafterplanting.Considering101specieswereplantedinthecorridorthiseffectivelydoubledthetotalspeciescomplement.SomelowlandframeworkspeciesrestorationsiteshaveshownevenfasterratesofnativespeciescolonisationTuckerMurphy1997.Photo31.A22yearoldrainorestrestorationplantinglocatedatEubenangeeSwampNationalPark.Allthepioneerplantsatthissitehavenowbeenreplacedthroughprocessesonaturaldispersalandcolonisationolatersuccessionalplantspecies.Theoresthasdevelopedacomplexmulti-layeredappearanceandcolonisingepiphytesareconspicuous.EubenangeeSwampNationalParkisoneonorthQueenslandsmostdiverseenvironmentsandtheAliceRiverplantingisanexampleotherapidrecoverywhichtypifesrameworkspeciesplantingsonthecoastallowlands.PhotoBiotropicaAustraliaPtyLtd.Around30-40frameworkspeciesaregenerallyplantedwhenusingthistechniqueaverysmallproportionofthetotalnumberofspeciesthatmightoccurinaparticulararea.Allplantsareestablishedatthesametimeandtherearenofollow-upplantings.Theframeworkspeciesmethodresultsincanopyclosureinaroundtwoyearsandmaintenanceisreducedtooccasionalweedcontrolonly.Itisimportanttorememberthatplantsselectedintheframeworkspecies RepairingtheRainforest79methodhavethecapacitytoattractmanyseeddispersingwildlie.Itistheresponsibilityothesespeciestoaddtheextradiversityolieormandspeciestypicaloaparticulararea.Theobjectiveisnottore-createarainorestbuttoputinplaceconditionsthatosterthenaturalregenerationoadiverseresilientandsel-sustainingecosystemseealsoChapter9.Inorderoimportancetheprincipaleaturesorameworkspeciesincludea.ToleranceofopenconditionsManyrainorestplantsareabletocopewithbeingestablishedinopenareasandmanycanopyspeciesinparticulartolerateexposuretoullsun.Frameworkspeciesshouldalsohavesomedroughttoleranceandbeabletogrowindegradedsoils.ManyWetTropicsrameworkspecieshavebroaddistributionsotenextendingtootherpartsoQueenslandandAustralia.Thissuggeststhattheyareadaptedtoawiderangeoclimaticconditionsandareattractivetoawiderangeodispersalvectors.Theydonotrelyonspecialistdispersalrelationships.b.AttractivenesstoseeddispersingwildlifeAllvascularplantsproduceseedsbutcareulobservationhasshownthatsomespeciesproduceruitswhichareparticularlyattractivetorugivorousbirdsandmammals.Theruitsothesespecieshaveanumberocommoncharacteristicsconvenientsizee.g.threetotenmillimetresallowsthemtobeswallowedbymostrainorestbirdsproducedannuallyratherthaneverytwoyearsorirregularlyprovidenutritiousruitswhichoerasignifcantdietaryrewardCrome1975GoosemandTucker1995producedinabundantcrops.c.EarlyproductionofwildliferesourcesEarlierproductionoresourcesleadstoincreasedrugivoreinteractionandthepotentialorenhancedvertebratedispersaloseeds.FrameworkspeciestypicallybeginproducingowersandruitsrombetweenthreeandeightyearsaterplantingalthoughthisisdependentonarangeoactorsincludinglightavailabilityrootcompetitionandthesuccessionalstageinwhichaspeciestypicallyoccursTuckerSimmons2004.Individualsonthemarginsoaplantingandthoseatcanopylevelwillgenerallyruitmorequicklythanotherspecies.Somerainorestspeciescantakemanyyearstoproduceowersandruitandoeronlyaperchsiteuntilthistime.d.KeystonespeciesInrainorestsresourcestendtooccurinannualcyclesoeastollowedbyamine.Consequentlyresourcesavailableorwildlieareintermittentinbothspaceandtime.ForrugivorouswildlieintheWetTropicsthemonthsbetweenMarchandJulyareespeciallydifcultwithewerruitsavailable.PlantswhichproduceruitsatalltimesdonotexistbutthefgsFicusspp.areoneplantgroupwhichusuallyhasatleastonespeciesruitingatanytimeotheyearShanahanetal2001.Forthisreasonfgsareanimportantcomponentotherameworkspeciesmethod.Somefgswillalsoproduceruitromanearlyage.SpeciesintheLauraceaelaurelamilyarealsokeystonespeciesprovidingawidevariationodierentsizedseedsotenwithanutritiousoilyesh.OtheramiliesareseasonallyimportantCrome1975.Someplantscanalsobeconsideredkeystonespeciesbecausetheyproduceruitswhichripenoutsideperiodsopeakabundancethelean-timespeciesdiscussedinChapter11.Forvertebrateswithamainlyruitdiettheseplantssupplybridgingresourcesuntilmorevariedchoicesareavailable.ThecelerywoodgroupPolysciasspp.areagoodexampleoagenuswhicheedsmanyruiteatingbirdsinthelateautumnmidwinterperiod.Polysciaselegansisespeciallydesirableasitsregularandabundantruitcropsotenattractlargegroupsoruitpigeonsandtheplantisbothwidespreadandveryhardy. 80RepairingtheRainforestSomeplantsareimportantintheliecycleomanylocalanimalsbothvertebratesandinvertebrates.ThismaybebecausetheplantisaspecialisedhostsuchastheantplantMyrmecodiabeccariianditsattendantantcoloniesortheplantreliesonaparticulardispersersuchastherelationshipbetweenmistletoesandthemistletoebirdDicaeumhirundinaceumortheanimalsyoungeedontheplantsoliagesuchasthelarvaeotheherculesmothsCoscinoceraherculespreerenceorthebleedingheartHomalanthusnovoguinensis.Thesemutualistrelationshipsshouldbeaccommodatedinplantingdesignswheretheyexistinaparticularlocality.Finallycertainspeciesaredominantcomponentsoaparticularplantcommunityyettheyarenotwellrepresentedinnaturalregeneration.ForinstancethetulipoaksArgyrodendronspp.areaconspicuouscomponentothecanopyinmanyoresttypesintheWetTropics.ThisgenustypicallyoccupiestheuppercanopyanditsgyroscopicwinddispersedseedsareconspicuousduringmastseasonsvanSchaiketal1993whenmaturetulipoaktreesruitsimultaneouslywithasubsequentpulseoseedlingestablishmentNadolny1999.ObservationsintheWetTropicssuggestdispersalandregenerationotulipoaksandotherwinddispersedcanopyspeciesdoesnotextendintorestorationplotseventhoseover20yearsoldandadjacenttointactorest.Whenplantedhowevertulipoakseedlingsgenerallyperormwellinrestorationplantingsasdomanylatesuccessionalcanopytreeswithwinddispersedseeds.e.AbilitytocreatenewhabitatawayfromplantingsitesManyrameworkspecieshavetheabilitytogerminateinsub-optimalconditionswhichiswhymanyothesespeciesarerequentlyseenbeneathence-linesandamongstpatchesoyoungregrowthacrossthelandscapeHarveyetal2004.Plantingrameworkspeciescanpromoterapidregenerationohabitatawayromtheplantingsiteagainthroughtheactivityowide-rangingseeddispersingwildlieasseedsromrameworkspeciesplantingsaredispersedtootherpartsothelandscape.f.RapidorpersistentgrowthPlantswhichareabletoquicklygainaheightadvantageoverweedsarepreerredoverotherslower-growingspecies.Themicroclimatecreatedbywoodyplantsprovidesabettergrowingsiteorvertebratedispersedrainorestplantsandtheirheightattractsseed-dispersingvertebratesDavisetal1998Tohetal1999Holletal2000.Someplantsarenotknownorrapidgrowthbutareverypersistentevenwhenconditionsarenotideal.Thesespeciestendtocopewellwithcompetitionandmanyonlyoccurinmaturerainorests.Shrubsarealsoimportantbecauseotheirpersistenceandbushyhabitatwhichcastsshadeatlevelsclosertotheground.g.EaseofgerminationPlantswithseedswhichareeasytocollectandgerminatearepreerredoverspecieswhichareerraticordifculttogerminate.Aplantwhichproducesabundantseedcropsandisalsoeasytogrowmakessuchspeciesanidealchoiceorrestorationpurposes.Plantswhichhavebecomerarethroughhabitatlossmayalsogerminatereadilyandwherepossibletheseshouldbeincludedintheplanting.WhyareearliersuccessionalspeciesimportantWhilerameworkspeciesencompassplantsromacrossthesuccessionalgradientpioneerandearlysuccessionalspeciescomprise30percentothetotalwiththeremaining70percentderivedromlatersuccessionalstagesrefertoTable3.Plantsromearliersuccessionalstagesareimportantortheir1.rapidgrowthandrelativelyshortliespan2.abilitytoproduceowersandruitsromayoungageGoosemTucker1995Erskineetal2007. RepairingtheRainforest81ForexamplebleedingheartHomalanthusnovoguineensisacommonnorthQueenslandspeciescanproducetwoprolifcseedcropsinoneyearincreasingitswildlieresourcevalue.BecauseearlysuccessionalspeciesgrowveryquicklytheycanrapidlycreateamorestructurallycomplexenvironmentSwaineWhitmore1988SeimannRodgers2003.Becausetheygrowtallermorequicklytheyarealsomorelikelytoattractbirdsseekingasaevantagepointandattractmoreseedsintheirvicinity.Theirrapiddevelopmentmeanstheytendtoshedbranchesandleavesquickly.ThisincreasedleatwigandbranchlitterprovidesbetterconditionsorseedgerminationandseedlinggrowthBenitez-Malvido1999SeimannRodgers2003Celentanoetal2011.Astheearlysuccessionalspeciesdiegenerallyater15-50yearstheyallandcreatedisturbance.ThisresultsinreducedrootcompetitionextralightpenetrationtotheorestoorandincreasedstructuralcomplexityatgroundlevelasaresultoallentrunksandbranchesErskineetal2007Celentanoetal2011.Extralightisavailabletoseedlingswhichgerminatebeneathearlysuccessionalspeciesspeedingtheirgrowthandcreatingevenmorestructuralcomplexity.Fallentrunksprovidedeadwoodaeaturewhichprovideshabitatormanyormsolie.Forinstancewood-boringbeetlesdependonasupplyodeadwoodoroodandhabitat.Thesebeetlesarethecreaturesresponsibleorburrowingintothedeadwoodwithinlivetreesandcreatingtreehollowsacriticalresourceormanyspecieswhicharedependentonhollowsorbreedinganddensites.Earlysuccessionalspeciesalsoproduceowersandruitsearlyinliegenerallyrom3-4yearsonwards.Theseresourcesattractavarietyowildlieincludingthosewildliespecieswhichplayimportantrolesinpollinationandseeddispersal.Specieswitheshyruitsarethemostuseulothisgroup.SpeciessuchasbleedingheartH.novoguineensiscelerywoodPolysciaseleganscoeebushBreyniacernuaandglossytamarindGuioaacutifoliaaregoodexamplesastheyattractrugivorousbirds.ConverselywattlesAcaciaspp.andsarsaparillaAlphitoniaspp.havehardseedswhichtendtoattractmoreseedeatingbirdswithcrackingbeakssuchascockatoosandparrots.Howeverhardseededspeciesshouldnotbeignored.Acaciascreatedenseshadeandout-competeweedsveryeectivelyprovidinggoodsitesorseedlingregeneration.Sarsaparillaattractssmallseed-eatingbirdswhichalsoeedontheruitsootherplants.Thehorizontalbranchingarchitectureosarsaparillatreesalsoprovidesidealperchingsitesorbirds.Otherhard-seededspeciessuchasMacarangaspp.alsohavemanysimilaruseulattributes.IntensetropicalcyclonesareeventswhichcreatemajordisturbanceandchangestooreststructureandmicroclimateCatteralletal2008Kanowskietal2008Bellingham2008.InmatureoreststhePhoto32.An11yearoldplantingatTarzaliAthertonTablelands.Tallerstemsattracthighernumbersoffrugivorevisitsandareafocalpointfornaturalregeneration.ThisAlphitoniahasaccumulatedmanyspeciesandlifeformsincludingthevinePipersp.usingthetrunktoclimbupwardstothedevelopingcanopy.PhotoBiotropicaAustraliaPtyLtd 82RepairingtheRainforestextralightpenetratingtotheorestoorateracyclonestimulatesthegrowthoestablishedseedlingsandnewseedlingsromthesoilseedbank.TheythriveintheextralightandgrowtooccupynewspacesConnellGreen2000Pohlmanetal2008TurtonSiegenthaler2004.Inrainorestrestorationplotsbecauseoageandotheractorsthenumberoestablishedseedlingsandnativeseedsinthesoilseedbankismuchlower.SeedsandseedlingswilleaturemoreweedssothataterdisturbancethesearelikelytobetheplantswhichgerminateBellinghametal2005Murphyetal2008.Weedinvasioncanrapidlydiminishhabitatvaluesandmayoverwhelmtherestorationplottothepointwhereacompletere-plantingisrequired.Restoredsystemsdonothavethesameresiliencetodisturbanceasanestablishedorest.Plantingacomponentoearlysuccessionalspeciesisanimportantwayinwhichtobuildresilience.Shorter-livedspeciesproduceseedsromayoungageandmanyseedsareincorporatedintothesoilseedbank.InrestoredareasaterTropicalCycloneLarryearlysuccessionalspeciesrapidlyoccupiedthespaceletatercanopiesweredamagedaneectmorenoticeableinolderrestorationplotsandplotswhereearlysuccessionalplantscomprised25percentotheinitialplantingmix.Withoutastgrowingearliersuccessionalspeciesbeingincorporatedwithinrestorationplotslargescaledisturbancessuchasthosecausedbycyclonesaremorelikelytobecolonisedbyweeds.Ithesurroundingcanopyisabletorecovertheseplantsmaynotsurviveormorethanoneortwoyearsbutithecanopyislargelydestroyedthentheearlysuccessionalplantsaremorelikelytoprovidesomelongtermresiliencetoweedinvasion.Photo33a.A20montholdrameworkspeciesplantinginWooroonooranNationalPark.Weedsarenolongerpresentbutthesitehasyettobeginrecruitingnewspecies.Notethedevelopinglitterlayerandthesheddingolowerbranchesundertheinfuenceoshadingbytheuppercanopy.Only12specieswereusedtoplantthissitebecausethesitehasintactorestonbothsidesanddispersalwillrapidlyaddnewspecies.Thisplotisnowsel-maintainingandnourthermaintenanceisrequired.PhotoBiotropicaAustraliaPtyLtd.MAXIMUMDIVERSITYMETHODRainorestanimalsareremarkablyintolerantoclearedlandandmostwillavoidtheseareasLaurance1997Goosem20002002Lauranceetal2009.ThestrengthotheisolationeectvariessignifcantlydependingonanindividualspeciestoleranceandthedistancebetweenragmentsGoosem2002.RainorestdependantrugivoressuchasthecatbirdAiluroedusspp.avoidthepasturescropsandsettlementswhichsurroundandisolaterainorestragmentswhereascassowariescommonlytravelacrosssuchareasintheirwide-rangingsearchoroodwaterandmatesCromeMoore1990Moore2001.MammalssuchasthelemuroidringtailpossumHemibelideuslemuroidesavoidclearingsLaurance1997Goosem2002whereasLumholtzstree-kangarooDendrolaguslumholtziappearslessconstrainedKanowskietal2003.Photo33b. RepairingtheRainforest83IsolationgreatlyreducesthechanceoseeddispersersvisitingasiteandnaturallyincreasingrainorestspeciesdiversityTuckerMurphy1997Whiteetal2004Moranetal2009.Insteadisolatedplotstendtobevisitedbybirdsthatarecharacteristicoopenareas-birdssuchasthepiedcurrawongStreperagraculinaandthebrownwoodpigeonMacropygiaamboinensisCrome1990JonesCrome1990Westcottetal2008.ThevegetationsurroundingisolatedrainorestrestorationsitesisusuallyweeddominatedanditistheseweedsthatarethesourceoseedsdispersedbyopenareabirdsWhiteetal20042009.Asaresultrainorestplantingsdistantromnativerainorestvegetationorwithinareaswithhighlyinvasiveweedsareverysusceptibletoinvasionbyexoticplants.Isolationthereoremeansewnativeseedinputsandpotentiallyhighratesoweedinvasion.Becauseorainorestseeddispersallimitationtoisolatedrainorestrestorationsitesspeciesandlieormdiversitywillnotincreasenaturally.Maximumdiversityplantingsaimtoovercomesomeothisdispersallimitationproblembyre-plantingasmuchaspossibleothepre-clearingdiversity.InadditiontoestablishingawidervarietyospeciesandlieormstheseplantingsalsodierromrameworkspeciesplantingsinotherrespectsincludingEarlysuccessionalspeciesareavoidedorrestrictedtolessthantenpercentotheindividualsplantedSequentialplantingsmaybenecessaryoverseveralyearstocaterorshadedependantrainorestspeciesthatareintolerantoopenconditionsLongermaintenanceperiodsarerequiredbecauseweedinputsaremorepersistent.TherearemanyareasinnorthQueenslandwhichhaveexperiencedwidespreadhabitatlosswhereextraspeciesdiversityisrequired.LargepartsothecoastallowlandsbetweenCairnsandInghamhavebeenextensivelydeorestedandsmallragmentshavebeenbadlydisturbedbycyclonicactivityBruceetal2008.Smallrainorestragmentsaregenerallyisolatedinaseaosugarcane.Herbaceousandwoodyweedsarediverseandabundantinthelandscapesurroundingrainorestragments.Streamsandriversfankedbynarrowbandsonativevegetationaresimilarlysusceptibletoweedinvasion.Thesesitesalsoneedplantingswhicharemulti-layeredbecauseotheregularfoodingdisturbancewhichoccursonthelowlands.Maximumdiversityplantingsarewellsuitedtothere-establishmentoMabiorest-RegionalEcosystem7.8.2orType5bTracey1982.Thisendangeredsemi-deciduousrainorestcommunityisrestrictedtoverysmallandisolatedragmentsontheuplandtablelandsbetweenAthertonandMalandaandmostragmentsareheavilyinestedbyweedsMabiForestWorkingGroup2000. 84RepairingtheRainforestPhoto34.Mabiorestisasemi-deciduouscomplexnotophyllvineorestwhichisconnedtoareasoyoungstonybasaltonthedrierwesternmarginsotheAthertonTablelands.Theertilesubstratecompensatesorthehighrainallnormallyassociatedwithacomplexrainorest.Thesemi-deciduousnatureothecanopyisaresponsetoseasonalwaterstress.Itallowsaseasonalabundanceolighttoreachtheorestfoorandenablesthedevelopmentoashrubbyunderstorey.PhotoCampbellClarke.UnlikeallotherWetTropicsrainforestcommunitytypesMabiforestischaracterisedbyahighproportionofdeciduousorsemi-deciduouscanopytreesandadenseshrublayerwhichisdominatedbytwoorthreespecies.ThisshrublayerisonlypresentinthelargestfragmentssuchasatCurtainFigWongabelStateForestandTolgaScrubReserve.Thedominantshrubsarenottolerantofopenconditionsandareonlyencounteredinwell-developedforest.WheretheyremainplantssuchasturkeybushHodgkinsoniarutescensCodiaeumvariegatumandDichapetalumpapuanumareaprominentlayer.Elsewheretheshrublayerhasbeenlargelyreplacedbyexoticshrubsandvines.Photo35.Mabiorestischaracterisedbyahighproportionodeciduousorsemi-deciduouscanopytreesandadenseshrublayerwhichisdominatedbyturkeybushHodgkinsoniarutescensCodiaeumvariegatumandDichapetalumpapuanum.Theseshrubsarenottolerantoopenconditionsandinarestorationplantingareveryslowtocolonisenaturally.Theseshrubscanbeintroducedintoaplantingtwotothreeyearsatertheinitialplantingwhenconditionsaremoresuitableortheirsurvival.PhotoCampbellClarke. RepairingtheRainforest85Inarestorationplantingtheseshrubbyplantsareveryslowtocolonisenaturallyandinterventionisrequiredtomanuallyestablishthemwhenthemicroclimatebecomessuitable.Generallyitmaytaketwotothreeyearsatertheinitialplantingorsufcientshadeandlealittertodevelop.Howeveronceamicroclimatehasestablishedtheprocessointroducingshade-tolerantplantscancommence.Naturallytheseshrubsoccurindenseaggregationsandtheycanbeplantedataclosespacingo300millimetres.MabiorestalsocontainsanumberounderstoreyplantsthatoccuronlyinthisoresttypeandbecauseonlytwopercentothistypeoorestremainsthetotalpopulationosomeotheseplantsisverylowMabiForestWorkingGroup2000.Asorestragmentationcontinuestoincreaseitmaybeinevitablethatgreaterinitialandsubsequentspeciesdiversitywillneedtobeincorporatedintorestorationplantings.Eachsiteisdierentandthedecisiontoincludemorespeciesdiversityshouldbemadeaterthreeyears.Bythistimeweeddiversityandabundancebeginstodecreaseandnativespeciescolonisationismorecommon.Iaplothasailedtorecruitmanynewspeciesaterthreetofveyearsthenextradiversitywillberequiredtobuildresilience.Thetimingoollow-upplantingsisimportant.Onceplantingsbecomeestablishedcompetitionorlightandromtherootsoexistingplantscancreatedifcultiesorestablishingadditionalplants.Newindividualsplantedintoanexistingestablishedplantingtendtogrowquiteslowlyunlesstheyareplantedintonaturalgapswhichprovidebothextralightandlessrootcompetition.Thiseectbecomesmoresevereitalllankyplantsareusedinollow-upplantings.Improvedgrowthratesareachievedbyplantingsmallerseedlingse.g.notallerthan200-300millimetreswhichtendtogrowmorevigorouslythanlargermoreadvancedplants.SatisactoryresultsmaysometimesbeachievedbydirectseedingintoestablishedplantingsDoust2004Coleetal2011.Handdispersaloseedsisacheapandeectivewaytoincreasediversity.CareisrequirediplantingsareadjacenttoexistingorestswhererodentsarepresentandmayconsumealargeproportionointroducedseedsPena-clarosdeBoo2002Elmouttie2009.Photo36a.A17yearoldplantingatDonaghysCorridor.Anaturallyrecruitedunderstoreyalmostcompletelyobscuresthepeopleintheletimage.Notetheover-storeycomprisingtheoriginallyplantedtreesnowclothedinlichens.StudiesshowedthatwithinfveyearsbushratsRattususcipesromthepreviouslyisolatedLakeBarrinepatch498hahadacquirednewgenesromtheintactpopulationatWooroonooran80000ha.PhotoCampbellClarke.Photo36b. 86RepairingtheRainforestSEALINGMARGINSRegardlessothemethodologyemployedprotectingtheedgesoaplantingromweedinvasionisanessentialtask.Onewaytolimitweedsinvadingarestorationsiteistouseasuiteoso-callededgesealingspecieswhichhavecommonarchitecturaleaturesandarehighlyattractivetoseeddispersingwildlie.Bushyspecieswhichretainoliageromgroundleveltotheirtopscastsignifcantshadeandcanphysicallyblockweedsrompenetratingintoaplot.Whenplantedwithinaplotthesespecieswillgrowtallandstraightwithatypicalcrownbutwhenplantedontheedgewheretheyreceivehighlevelsosidelighttheyadoptabushyhabitwithbranchingdownthetrunk.EvenastheyagetheytypicallyretainthiseaturepossiblyaresponsetostrigolactonelevelsGomez-Roldanetal2008.Photo37.A12yearoldplantingatTarzaliAthertonTablelands.Themarginhasbeensealedusingavarietyofspeciestoblockweedmovementintotheplot.Notethetallerstemsofpioneerplantsjustinsidetheouterrow.Theirsparsecanopyisnotsuitedtomarginsbuttheirheightattractsperchingbirdswhichacceleratesdispersalandcolonisation.PhotoBiotropicaAustraliaPtyLtd.Asseedlingsdeveloptheirdensityalsotendstoexcludeweedgrowthandpreventweedseeddispersalintotheedge.ThisstrategyhasbeenadoptedatDonaghysCorridorthewildliecorridorlinkingLakeBarrinetoWooroonooranNationalPark.AtthissitemanydierentfgsFicusspp.wereestablishedalongtheplantingmarginandinter-plantedwithbrownsalwoodAcaciacelsa.Asdiscussedpreviouslyfgruitsareakeystoneresourcebeingconsumedbymostrugivorousbirdsatsomepointbutparticularlywhenthereareewotherresourcesavailable.Brownsalwoodormsaverydensecanopywhichresistsweedinvasion.Togetherthesespeciesormaneectivebarriertoweedinvasion.Otherrameworkspeciescanulflasimilarrole.SpecieswithgoodedgesealingeaturesareidentifedinthespecieslistsprovidedinPart3. RepairingtheRainforest87Anothermorelabourintensivemethodofedge-sealingaplantingistohedge-prunethebranchesontheperipheryofthesitewhichstimulatesthedensegrowthoflateralbranches.Thistechniqueisusefulinsomefarmsituationstomaintainvehicleaccessandtomaintainsafeworkingconditionsforfarmequipmentsuchasharvesters.Theexampleinthephotographisofasealededgeofaplantingadjoiningasugarcanefarm.Photo38.A15yearoldplantingatDonaghysCorridor.Atthissitewattleandfgarealternatelyplantedalongthemargin.Wattlesgrowquicklyandsuppressweedswhilstthedensefgcanopywillgrowoutwardsintothepaddockprovidingshadetocattlebueringtheedgeandattractingtheattentionopassingrugivores.Figleavesalsoprovideoodtoanumberopossumspecieswhichrequiremoreorlesscontinuouscanopiesoreaseomovement.PhotoCampbellClarke.Photo39.Hedgepruningoplantsontheedgeoaplantingwillstimulatethedensegrowtholateralbranchesandsealstheedgeverythoroughly.Thislabourintensivetechniqueisuseulinsomearmsituationstomaintainvehicleaccessandtomaintainsaeworkingconditionsorarmequipmentsuchasharvesters.PhotoCampbellClarke. 88RepairingtheRainforestRIPARIANRESTORATIONAllthemajorriversotheWetTropicsandmanyotheminorwatercourseswhicheedthempassthroughdisturbedlands.Thisaectsthequalityoriparianecosystems.Eventheregionsleastdisturbedcatchmentssuerromweedinvasion.ForexampletheriparianzonealongtheRussellRiveraroundthebaseoMountBartleFrereislinedbyguineagrassandgardenescapeesromthepasturesandsettlementsoriginatingintheriversheadwaters.Riversalsocarrylargequantitiesosedimentandnutrientslostromadjacentagriculturaldevelopmentandhumansettlement.Pureandabundantwaterisimportanttotheunctionorainorestecosystemsin-streamreshwateraquaticecosystemsandultimatelytocoastalmarineecosystemsandtheorganismswhichinhabitthem.Restorationodegradedriparianrainorestrecognisestheimportanceomaintainingthequalityandquantityoourwaterresources.TherestorationostreambankorriparianvegetationhasbeenaocusomuchrainorestrestorationeortinnorthQueenslandordecades.Overthisperiodmanykilometresoriparianvegetationhasbeenreplantedandtherearemanyreasonswhythisshouldcontinue.Theriparianzoneotropicalwatercoursesisbiologicallyrichbecauseotheabundantsoilmoistureorplantsandsuracewatervitaloranimalsurvival.Watercoursesowhateversizearesometimesreerredtoasnatureslielinesinrecognitionotheirimportanceinsustaininglie.RestoringriparianrainorestbeneftsawiderangeodierentwildlieandecosystemsandprovidesnewhabitatwhereitismostneededJansen2005Lawsonetal2008a2008bLeesPeres2008SeamanSchulze2010.Thesebeneftsextendromtherainorestsallthewaytocoastalandmarineecosystems.WaterqualityishighestalongwellvegetatedwatercoursesBurcheretal2008Arnaizetal2011.Overhangingvegetationreduceswatertemperatureresultinginhigherlevelsodissolvedoxygenandimprovedhabitatorcold-bloodedaquaticspeciesHeartstill-ScalleyAide2003Burcheretal2008.OverhangingvegetationalsocontributeslealitterandorganicdetrituswhichormsthebasisomanyaquaticoodchainsBunnetal1999LorionKennedy2009.Thewoodydebriswhichallsintostreamstwigsbrancheslogsetc.alsoprovidesimportanthabitatoraquaticorganismsLorionKennedy2009Arnaizetal2011.Specieswhichareadaptedtotherapidrisesandallsinwaterlevelssocommoninthetropicsareadeptatbindingandcoveringsoilandreducingthescouringeectsooodwaters.RiparianvegetationalsoreducesthevelocityooodwaterstherebyreducingthepotentialerosionandtransportosedimentsandthepollutantsthatareboundtosedimentparticlesLowranceetal1984Dosskey2001.Vegetatedstreamsareimportantsitesorrecreation.SwimmingfshingbirdwatchingbushwalkingandsightseeingarecommonpastimesintheWetTropicsandtheseactivitiesaredependantinsomewayonthequalityoourwaterwaysandtheirassociatedriparianrainorestvegetation.Welldevelopedriparianrainorestisalsomorevisuallyappealingthanbareerodingbanksandshowsaresponsibleandmoresustainableapproachtolanduse.SPECIESSELECTIONRiparianareasareunlikeotherpartsotheorestbecausedisturbanceintheormohighvelocityoodwatersisaregularoccurrenceandmostotheplantsgrowingbesidestreamsandriversareadaptedtothisregularhighintensitydisturbance.Thiscreateszonesovegetationwhereasmallgroup RepairingtheRainforest89omorespecialisedspeciesinhabittheareawherelandandwatermeet.Smallstreamswhichriseandallquicklydonotgenerallysupportspecialistriparianforawhereaslargerstreamsandriversalwayssupportspecieswhichareotenrestrictedtothevicinityostreambanks.Thismeansthatrestoringriparianrainorestsintheuplandsandhighlandswillutiliseadierentsuiteospeciestoriparianrestorationplantingsonthelowlands.Inmanyuplandhighlandplantingstherewillbeewerspecieswhichareoundonlynearwatercourses.WhilstthereareewerspecialistriparianspeciesintheuplandshighlandsthisareacanalsobepronetorostsbetweenJuneandSeptember.Frostshavealwaysoccurredathigheraltitudesbutrostsonlyaectopenareas.Matureorestsareabletocreatetheirownmicroclimateandbuerthemselvesromrostdamage.Frostsnowextendintoclearedareasormerlysupportingrainorest.TheareabetweenTolgaandRavenshoeismostsusceptibletorosts.Becausestreamsarethelowestpointinthelandscapeandmanystreamsnowlackthemicroclimatebueringointactorestalongtheirmarginsrostscanbearegularanddestructiveoccurrence.Fewrainorestplantsareadaptedtorosts.Speciesdisplayingrosttolerancetendtobethosewithawidedistributionalrangeotenextendingtothesub-tropics.AlthoughthereareanumberorosttolerantnorthQueenslandriparianrainorestspeciesmanydonotnecessarilyoccurnaturallyinallrostproneareas.Inthiscasetheneedtoestablishanativerainorestcoveroverridesthechoiceolocalplantsonly.LocalspeciessuchascreekcherrySyzygiumaustralecreeklillypillyAcmenasmithiiblackwattleAcaciamelanoxylonandriveroakCasuarinacunninghamianadonotoccurinalluplandareasbutallaretoleranttorostsomediumtoheavyintensity.Itheseandothertolerantspeciesarenotplantedinrost-proneripariansitesthenwidespreadplantlossesshouldbeexpected.Oncethesespecieshaveestablishedtheyproviderostprotectionbymodiyingthemicroclimate.Thispermitsthesuccessulsubsequentgrowthanddevelopmentolocalrost-sensitivenativespecies.Figure4.TypicalprofleoariparianrainorestplantingontheAthertonTablelands.SteepincisedstreamssuchasthisarecommonontheTablelandsandthecoastaloothills.Thereislittlezonationovegetationandewerplantswhicharesolelyrestrictedtoriparianzones.Watersedgespeciesinthisdiagramaremorecommoninwetsclerophyllorestsbutareveryrosttolerantsoaresuggestedoranyareawhererostislikely.Bankspeciesareotenassociatedwithmoistsitesawayromriparianzones.Inthelongertermthesebankspecieswillreplacemostothesuggestedwatersedgespecies. 90RepairingtheRainforestOnthelowlandslargerrivershaveriparianzonesthataresubjecttoperiodsoinundationaswellasrapidrisesandallsinwaterlevelsandowrates.Manylowlandrainorestspeciesareadaptedtointermittentinundationandlowlandriversystemseatureanumberospecieswhichareprimarilyoundinsuchsituations.Inplanninglowlandrainorestriparianrestorationplantingsitisimportanttobeawareothelengthanddepthoinundationwhichoccursatthesiteinatypicalwetseason.StreamowratesarehigherintheoothillsthanonthelowlandsandspeciessuchasgoldenpendaXanthostemonchrysanthusrivercherrySyzygiumtierneyanumandkanukaboxTristaniopsisexiliforadominate.AsowratesdecreaseandriverswidenthesespeciesaregenerallyreplacedbyLeichhardtpineNaucleaorientalisandnarrow-leapaperbarkMelaleucaleucadendra.Combinationsoallthesespeciesoccurinmanysitesdependingonlocalactors.AstheperiodoinundationincreasesspeciessuchasLeichhardtpineandnarrow-leapaperbarkbecomemoredominantuntilthewatercoursebecomesinuencedbysalinetidalprocesseswheretheyarereplacedbymangroves.Figure5.Typicalproleoariparianrainorestplantingonthecoastallowlands.Widerwatercoursesrefectdierencesinwatervolumeandsurroundingtopographyandresultinstrongerpatternsovegetationzonation.Thefoodplainisprominentandhostsspeciesthataregenerallyrestrictedtothispositioninthelandscape.Bankspeciesaremoretypicalothispositionalthoughtheyalsooccurinotherpartsotheorest.Channelwidthmeanscanopiesmaynotcloseoverthestreamsodenseplantingsatthewatersedgeareneededtoresistweedinvasion.WIDTHStreambankstabilityanderosioncontroldependlargelyonthequantityandwidthoriparianvegetationTabacchietal1998.InastudyotheWetTropicslowlandsnearMossmanLawsonetal2008aboundrainorestdependantbirdswereabsentromriparianrainorestsolessthan200metresinwidth.WhilstmanyrainorestspecieswillusevegetatedstripsthatarenarrowerthesestudiesshowthatstripsorainorestthatarewiderthanthestrictlyriparianzoneoawatercoursearearmorelikelytoprotectsoilresourcesandsupportthetotalcomplementobiodiversityseeFigure4Chapter13.Economicallyitmaynotbepossibletorestorewideswathesorainorestalongwatercoursesbutplantingverynarrowstripsisunlikelytoprovideanyrealwildliebeneft.Inessencewiderisbetter.OneotheproblemsinherentinrestoringthebanksowatercoursesisthelongnarrowlinearnatureotheseplantingsandthesusceptibilityothisshapetoedgeeectsseeChapter12.Weedscaninvadebothsidesotheseplantingsatthewatersedgeandalongthesideothetopbank-andweedcontrolisdifcultandmayberequiredormanyyears.AlongthewatersedgemoresunlightpenetratesandweedssuchasguineagrassandSingaporedaisySphagneticolatrilobataarecommonand RepairingtheRainforest91aggressiveinvaders.Bothcanestablishattheedgeandpersistormanyyearsoratleastuntilshaded-outbythedevelopmentoacontinuouscanopyextendingovertheland-waterinteraceareaandtherestoredvegetationissufcientlythicktoresistweedestablishment.Thelongedgealongthetopbankoawatercourseisalsoverysusceptibletoweedinvasion.Theedgeeectsassociatedwithnarrowplantingsallowtheseweedstoextendthroughouttheplantedarea.Edgesealingspeciesshouldalwaysbeestablishedtolimitweedingressalongthemarginsotheseplantings.Arowotalltreesalsoprovidesauseuladditionalbuerwhenplantedalongsideriparianrestorationplantings.Thisurtherreducesedgeeectsbybueringthenewmarginromwinddamage.ThishasbeendoneattheTablelandrestorationsitesshowninthephotographbelow-inthiscaseusinglocalnativeconiershooppineAraucariacunninghamianaandbunyapineAraucariabidwillii.OnthecoastallowlandskauripineAgathisrobustaandmilkypineAlstoniascholariscanperormthesameunction.AlistospeciesorplantinginriparianzoneplantingsisprovidedinPart3.Thislistalsoindicatesthepositionoeachspeciesinrelationtothestreamproflewatersedgeupperandlowerbanksoodplainsandspeciesdistributionlowlandsoothillsuplandsandhighlands.Someothesespeciesareentirelyrestrictedtoriparianhabitatsothersoccurinabroaderrangeoorestsettingsbutallarecommonlyassociatedwithwetterareas.Becausedisturbanceintheriparianzoneisregularandintenseitisimportanttobuildresilienceattheoutset.Thisisdonebypayingcareulattentiontothepositionoplants.Itisimportanttoestablishwatersedgeplantsasclosetothenormalwaterlevelaspossible.Thiszoneiswhereweedgerminationandgrowthismostlikelybecauseotheextralightanddisturbancealongthisarea.Avoidusingpioneerspeciesclosetotheowpath.Theyhaveminimalresistancetooodwatersandareonlysuitableabovethenormaloodlevel.AstheplantingreachestheupperbanksplantselectionshouldbebasedonthespeciessuggestedintheappropriatelistsprovidedinPart3.Photo40.A15yearoldplantingatDonaghysCorridor.Hooppinehasbeenrow-plantedadjacenttothecorridorplantingtolessenedgeeffectsinthecorridorplantingprovideshadeandsheltertostockandbeafuturesourceoftimberandfarmincome.Thefoliageofhooppinealsoprovidesnestinghabitatforgranivorousbirdswhichinhabitadjacentgrasslandpaddockenvironments.PhotoCampbellClarke.Photo41.An1822yearoldriparianrestorationplantingalongtheAliceRiveratEubenangeeSwampNationalPark.PhotoBiotropicaAustraliaPtyLtd. 92RepairingtheRainforest17.WEEDSProbablythemostsignifcantobstacletoecologicalrestorationisweeds.Weedcontrolisamajorpartosuccessulsitepreparationandon-goingmaintenance.Aweedalsoknownasanexoticorinvasivespeciescanbedefnedasaplantwhichdoesnotnaturallyoccurinaparticulararea.SomespeciesmaybenativeplantswhichhavebecomeweedybutthevastmajorityareplantswhichhavebeenintroducedtoAustraliaromothercontinents.Itisestimatedtherearearound2700introducedplantspeciesinAustraliawhichcanbeclassifedasweedsNRMMinisterialCouncil2007.Manyweedspeciesarehighlyaggressiveandcapableoinvadingbothagriculturalandnaturalareas.WeedcontrolcostsAustralianagriculturearoundourbilliondollarsannuallyandcoststothenaturalenvironmentarethoughttobesimilarNRMMinisterialCouncil2007.Manyweedsareplantswhichhavebeendeliberatelyintroducedbuthavesubsequentlyescapedromhorticulturee.g.lantanaLantanacamaraandagriculturee.g.GuineagrassMegathyrsusmaximus.Ecologicalweedshavetwomaineects.Firstlytheyareabletoinvadeandestablishinoradjacenttonaturalareasandsecondlytheyareabletostoporreversetheprocessonaturalsuccessionandregenerationwithinrestoredareas.SomeweedsmaycompletelystopsuccessionwhilstothersmaytemporarilydeectsuccessionawayromarecoverypathwayErskineetal2007Goosem2008.Boththeseeectswillcompromisethevalueoarestorationproject.Inthecontextorainorestrestorationweedsareaproblemintwodistinctphases.Thefrstphaserelatestoweedswhicharepresentattherestorationsitepriortoplantingandrequirecontrolasanimportantpartothesitepreparationprocess.Beoreanyrestorationplantingsareundertakentheexistingweedcovershouldbeeliminatedasthoroughlyasispracticabletoensureplantedseedlingsareestablishedreeoweedcompetition.Thesecondphaserelatestoweedswhichcolonisethesiteaterasitehasbeenplanted.Becausetheenvironmentalconditionsonthesitechangeromull-suntosemi-shadedthesecondphaseweedsareinvariablydierenttothosepresentonthesitepriortotherestorationplanting.Grasseswillnotbeasdominantalthoughtheywillpersistinthoseareasreceivingmoresunlight.Forbsherbsandeshy-ruitedvinesbecomemorecommonbecauseothemodifedmicroclimateandthedispersalotheseplantsintothesiteasbirdsbegintomakeuseothenewopportunitiespresentedbythedevelopinghabitat.WhenundertakingrestorationintheWetTropicsthemosttroublesomeweedstendtobethegrassesandthescramblingvines.Eachothesegroupshasdierenteectsonthegrowthanddevelopmentonativerainorestspecies.GRASSESGrassesareotenamajorproblemtobeovercomeinrestorationprojects.Thereareanumberoreasonsorthis.FirstlyexoticgrassesareextremelycompetitiveandareabletoefcientlycapturenutrientsandmoistureSunandDickinson1996Davisetal1998Hooperetal2005.Theirabilitytosuccessullyoutcompetetreeseedlingsorresourcesmayresultintreegrowthbeingstuntedoryoungseedlingsdyingrombeingcompletelysmothered.Thetallergrowinggrassesarethemostcompetitive.TerrestrialspeciessuchasGuineagrasselephantgrassCenchruspurpureaandgiantcaneArundodonaxareespeciallycompetitive.Semi-aquaticgrassessuchasparagrassUrochloamuticaandolivehymenachneHymenachneamplexicaulisarealsoveryefcientatstoppingregenerationo RepairingtheRainforest93nativeriparianspecies.Secondlygrassesarefre-tolerantandpromotetheirdominationbyproducingahighlycombustibleuelloadHooperetal2005.Rainorestseedlingsarekilledbyfreandfredamagetoedgesallowsthegrassestoexpandurtherintofredamagedsites.FinallygrassesmaintainadensegroundcoverwhichstopsmanyseedsromreachingthegroundsuraceandgerminatingsuccessullySunandDickinson1996.Mostgrassweedsareescapeesromcultivatedpasture.Theyareprimarilydispersedbymachinerybirdsandwaterandaremovedlongdistancesbythesevectors.VINESManyexoticvinesareefcientatclimbingontoyoungseedlingsandsmotheringtheirgrowth.Inrestorationsitesthegroupovineswhichcausethemostproblemsaretheimprovedpasturelegumes.Theirvigoroustwiningstemscanquicklyoverwhelmplantedseedlingsandremovalisdifcultbecausetheplantscannotbesprayedandthetwiningstemsneedtobecutromeachseedling.AllpasturelegumescausetheseproblemsalthoughglycineNeonotoniawightiicalopoCalopogoniummucunoidesandcentroCentrosemapubescensarethemostwidespreadandproblematic.Therearealsohorticulturalvineswhichhaveescapedromgardencultivationandaresignifcantinvadersosmallorestragments.Thesevinesalsothreatenrestorationplantingsadjacenttoragments.SiamweedChromolaenaodorataMadeiravineAnrederacordioliabluethunbergiaThunbergiagrandiforaandturbinevineTurbinacorymbosaareveryvigorousvineswhichcanrapidlyoverwhelmplantings.Exoticvinesareoundinmostpartsothelandscapebecausetheyarederivedrombothagricultureandhorticulture.Theseedsoexoticvinesaremovedbymanydispersersandmayalsobespreadvegetativelybydivision.USEFULWEEDSFromarestorationperspectivenotallweedsareruinous.Somecanbeexploitedbecausetheyattractseeddispersingvertebratesandareabletoshadeoutgrassesandotherlight-demandingweeds.CamphorlaurelCinnamomumcamphoraisoneexampleoawoodyweedwhichperormsboththeseroles.Theruitsocamphorlaurelareeagerlysoughtbyocksowhite-headedpigeonsColumbaleucomeladuringthemonthsoMarchandAprilwhenthereareewotherrainorestruitsavailable.Thetreescastdeepshadewhichprovidesanidealgerminationnicheornativerainorestplants.InnorthernNewSouthWalestheseattributeshavebeenstrategicallyexploitedbyrestorationpractitionerswhoareusingexistingcamphorlaureltreestoincreasetheamountowoodyplantcoverandhastentheprocessosuccessionNeilanetal2006Moranetal2009.InnorthQueenslandthereareotherweedswhichcanalsopromotesuccession.ForexampletobaccobushSolanummauritianumprovidesaregularsupplyoruitstomanybirdsandcastssufcientshadetoencouragethegerminationorainorestplants.Itisnotlegaloradvisabletocultivatesomeothesespeciesbutinmanyareastheyareanimportantexistingcomponentoawoodysuccessionandarguablytherearesituationswherethereismeritinallowingthemtocontinuetounctioninthisway. 94RepairingtheRainforest18.PREPARINGTHESITEOneothemainlessonslearntrom30yearsotreeplantingisthatinadequatesitepreparationisakeyreasonbehindsubsequentailure.Earlyrainorestplantingswereestablishedinareaswheregrassesandbroad-leaweedsdominated.Initiallynopre-plantingcontrolwasundertakenandgrassesandweedsweremanuallycutaroundseedlingsaterplanting.Failuresinevitablyensueduntiltheprocessoeliminatingweedspriortoplantingbecameastandardpartositepreparation.Itisimportantthatseedlingsareestablishedreeocompetition.Thisisbestachievedbybroad-scaleapplicationoherbicideormulch.Non-residualherbicideapplicationisthemosteectivetechniqueorlargesites.Whenpreparingasiterememberthatsprayingmayberequiredmorethanonce.ThesoilseedbankatsiteswhichhavesupportedexoticvegetationoralongperiodwillcontainalargestoreoweedsPauletal2012.Killinggroundcoverweedsespeciallyiaccompaniedbysoildisturbanceotenstimulatesthegerminationourtherweedseedsromthesoilseedbank.Thesewillusuallybegintogerminatewithin14-21daysatertheinitialherbicidetreatment.Forthisreasonitisadvisabletosprayasiteatleasttwoorthreetimespriortocommencingtreeplanting.Blanketsprayingthesiteistheeasiestandmosteectivewaytoremovepotentialweedgrowthpriortoplanting.Howeveronceseedlingshavebeenplantedthejoboweedcontrolusingherbicidesrequiresgreatcare.Photo42.Awellpreparedsite.Notetheabsenceofweedstheuseofslashedgrassasaninitialmulchlayerandtheclosespacedplantingoftreeseedlings.ThiscommunityplantingwasdesignedtowidenandextendanuplandwildlifecorridorontheAthertonTableland.PhotoCampbellClarke.Itheweedseedreservesoasiteareexhaustedasmuchaspossibletherewillbeewerweedstocontrolpost-plantingandlesslikelihoodoaccidentaloversprayontoplantedstock.Afnalherbicideapplicationadayortwobeoreplantingensurestherewillbenorequirementormaintenanceorsomeweeksaterplanting.Deadweedmaterialshouldalwaysbeletonsitetoaddorganicmattertothetopsoilandtoactasasoilcover.Mulchingishighlyrecommendedorsmallsiteswherehaycardboardnewspaperandothermaterialcanbeusedtoridthesiteoweedcompetitionpriortoplanting.Mulchshouldbesufcientlythicktostopweedgrowthandbere-appliedasweedsappear. RepairingtheRainforest95ECOLOGICALFURNITURETheprocessolandclearingandsubsequentgrazingandcroppingleadstothelossoground-storeyhabitats.Logsbranchesandrocksoallsizesanddierentphysicalarrangementsarepartotheorestsground-storeyurniture.Theyareusedbyawidevarietyoanimalsoreedingbreedingrestingandhidingrompredators.Dierentportionsoallenlogsareusedbyawideassortmentoanimals.Peelingbarkisusedororagingandshelterbyinvertebrates.DecayingwoodprovidesoragingsitesorthestripedpossumDactylopsilatrivirgataandspecialiseddeadwoodeedingbeetles.Beneaththelogisahabitatorsmallmammalsskinkslizardssnakesandrogs.Whensemi-submergedinwaterlogsareessentialhabitatorturtleswaterdragonsandfshandavouredbaskingsitesorpythons.Intheprocessodecaylogsreturnvaluablenutrientsandorganicmattertothesoilandaidinmoistureretention.Thisimprovesthequalityohabitatavailableorplantswhichgerminateadjacenttotheseeatures.Largelogsreshandordecayingarenotalwaysavailablewhereandwhentheyareneeded.HowevertherearemanylandholderswhosepropertiescontainexoticspeciessuchascamphorlaurelraintreeSamaneasamanandAricantulipSpathodeacampanulata.Thesespeciesarequitesuitableasdeadwoodhabitatandarereadilyavailable.Largebranchesarealsovaluableandwhenstackedinpilescanormcomplexmicrohabitats.Astherestorationsitematuresandnaturalregenerationcommencesearlysuccessionalplantsandorlatesecondaryspeciescanalsobethinnedtoprovidedeadwoodandunder-barkhabitat.Ringbarkingcanspeedtheirdemisebuttheirlongtermcontributionasdeadwoodwilldependonthespecies.Wattleshavemuchharderwoodandwillprovidelongerlastinghabitatwhencomparedtospeciessuchassarsaparilla.Agriculturalploughingandslashinghasremovedmostotheoriginalrocksandbouldersonceoundinpotentialrestorationsites.Onerockmayprovideonlyminorvaluebutpilesorockswithcrevicesodierentsizesprovideasignifcantandvariedhabitat.Snakeslizardsandskinksareespeciallyattractedtorocksandmanyernsandorchidsarecommonlyoundonrocksandboulders.Rocksareeasilyoundmostarmershavelargepilesadjacenttopaddockswheretheyhavebeenpushedaterclearingorcultivation.Onceasiteisplanteditisnotaseasytoplacetheseeatures.Itisasitepreparationtaskwhichshouldbecompletedbeorehand.Oncetheyareplaceditispossibletomorecareullyselectplantstoestablishadjacenttotheeature.Plantinggingersscramblersandvinesnearbywillincreasethevalueoground-storeyhabitatbyintegratingeaturesintothesurroundingvegetation.Artifcialnestboxesareonewaytocircumventtheabsenceonesthollows.Becausenesthollowsareslowtoormnaturallybutareanimportanthabitatresourcetheyarewortherectingitherearewildliespeciespresentwhichrequirehollows.Thereisconsiderablevariabilityinthedimensionsandshapeonesthollowsutilisedbybirdsandmammals.Owlsgenerallyrequiremuchlargerboxesthanglidersorinstance.Oncethesitehasbeenpreparedandtherequiredurnishingsareinplaceplantingcancommence. 96RepairingtheRainforestPLANTINGTreeplantingisanactoffaithinourcollectivefutureJ.PeterStanton1991.Plantingisperhapstheeasiestpartorainorestrestorationandalsothemostenjoyable.Therearehoweveranumberostepswhichneedtobetakenpriortothecommencementoplanting.Itisimportanttoensureplantsaresunhardenedpriortoplanting.Plantspurchasedromnurseriesareotengrownanddisplayedinshadyconditions.Whentheseplantsgoromashadyenvironmentwheretheyarewateredtwicedailytoanopensitetheeectsoullsunandwindcancausetransplantshock.Insomecasestheplantmayshedalloitsleavesandthenre-shootortheplantmaydie.Ipurchasingsotnurseryplantswhichhavecomeromagreenhouseplacetheminasunnypositionwheretheycanberegularlywatered.Whennewleavesappeartheywillbeadaptedtostrongersunlightandtheplantisthenreadyorplantingout.Sunhardeningwillgenerallyrequiretwotoourweeks.Alwaysensureplantingstockiswateredbeorebeingtakentothesite.Itmaybesomehoursbeoreplantsgointhegroundandapre-plantingsoakingwillensuretheplantisingoodconditionatplantingandcanberemovedromitspotwithminimalrootdisturbance.Atplantingensurethattheastergrowingearlysuccessionalspeciesarewellspacedandinterspersedamongstotherspeciesandavoidhavingthesamespeciessidebyside.Ensurethatmargin-sealingspeciesareplacedalongedges.Payparticularattentiontospeciesthatwillbeestablishedadjacenttoasitesecologicalurniture.Holesshouldbedugtwicethesizeothepotcontainingtheplant.Atthebaseotheholeputasmallamountogeneralertiliserandcoverthislightlywithsoil.Astherootsestablishtheywillgrowintotheertilisedsoilandgrowthwillbeboosted.Fertilisercanalsobeappliedasatopdressingaroundthebaseothestem.Iyouplacetheertiliseronthesuraceensuretherearenoweedspresent-astgrowingweedsaremoreefcientatcapturingnutrientsandwillrapidlyoverwhelmplantedrainorestseedlings.Althoughslow-releasemanurebasedertilisersarerecommendedasthesearelesslikelytocauserootburnanygeneralpurposeertiliserisanacceptablealternative.Rootsareabletorapidlyregrowitheyaremoistandindirectsoilcontactsoatthecompletionoplantingeachrainorestseedlingshouldreceivesufcientwatertoensuretherootsandsoilarebound.Creatingasaucer-shapedsoilmoundaroundthebaseotheplantisagoodwaytoincreasetheamountowaterwhichowstotherootsystem.Deadstemsshouldbereplacedasquicklyaspossibleaterthemainplantingunlesstheyareinapatch.Atersixmonthsneighbouringplantswillbegintoexertcompetitionorlightandrootspaceandsomenewlyestablishedplantswillbeunlikelytogrowsatisactorily.Generallyplantsarespacedatdistanceso1.5metresto1.8metres.Thedierencecanbesignifcantinthata1.5metrespacingrequires4400stemsperhectarewhilstawider1.8metrespacingrequiresonly3700stemsperhectare.Whenusingtherameworkspeciesmethoda1.5metrespacingpromotesveryrapidcanopyclosureandthecreationoamicroclimatethatallowsregenerationonativespecieswithintwelvetoeighteenmonths.Inthemaximumdiversitymethodplantingataspacingo1.8metresallowsmoreroomorollow-upplantings.Spacingdistancesotwometresormoreresultsinlightlevelswhichavourweedsandarequirementortheiron-goingmaintenanceoramuchlongerperiodotimeandshouldbeavoided. RepairingtheRainforest97MAINTENANCEThemaintenanceofarestorationsitepredominantlyentailsweedcontrol.Thehighlycompetitivenatureofweedsisthemainreasonwhytropicalrainforestrestorationplantingsmayfail.Oncerainforestseedlingsandsaplingsareembeddedinamatrixoftallgrassesandbroad-leafweedstheywillceasegrowingorexhibitveryslowgrowth.Grassesandbroad-leafweedsarebetteradaptedatcapturingmoistureandnutrientsinhighlightenvironmentsandmustbecontinuouslycontrolleduntiltheplantinghasdevelopedacanopywhichcaneffectivelyshade-outthelight-demandingweeds.Herbicideisthemorecommonlyusedsitemaintenanceoptionalthoughthereisaninherentriskofoversprayontoplantedtreeswhichareequallysusceptibletotheeffectsofherbicide.Ifweedshavecolonisedthesiteitwillbenecessarytocleararoundplantedstemspriortospraying.Thisistoreducetheriskofoversprayontoplantedstems.Herbicidesareafastandreliablewaytoeradicateweedsoverlargeareasandcanbeappliedatanytimewhenweatherconditionspermit.Generallybroad-spectrumherbicidesaremoreusefulbecausesiteswillcontainamixtureofgrassesandbroad-leafspecies.Glyphosatepreparationsaremostcommonlyused.Maintenanceweedcontrolcanbedoneeitherbyheavymulchingorbyherbicideapplicationoracombinationofboth.Thereareawidevarietyofmaterialsthatcanbeusedasmulchincludingcardboardnewspaperhaywoodchiporanyothervegetativematerial.Inadditiontostoppingweedgerminationmulchassistswithmoistureretentionandaddsnutrientsthroughdecomposition.Sometypesofmulchsuchasshreddedbarkandwoodchipwillrendersomenutrientsunavailableandsupplementaryapplicationsofnitrogenfertilisermayberequiredalongwithlimingtoreducesoilacidity.Mulchingisbestsuitedtosmallsitesbecauseofthelargevolumeofmaterialrequiredtocoverlargeareas.Dependingonthematerialusedmulchshouldbeatleast150millimetresdeep.Somewoodyweedsareabletogrowthroughmulchofthisdepthandmayrequiremanualcontrolifthisoccurs.Therearevariationsintherateofdecompositionbetweenvariousmulchproducts.Someproductswillrequiresupplementaryapplicationstomaintaineffectivesoilcoverandresistanceagainstweedgermination. 98RepairingtheRainforest19.GROWINGYOUROWNPLANTSMostrainorestplantsareeasilypropagatedandgrowingyourownseedlingsisawayoreducingcostsandensuringthequalityandprovenanceoseedlings.ManyspecieslistedinPart3occuracrossawiderangeoecologicalgradients.Bycollectingseedsromtheareasurroundingtherestorationsiteyouaremorelikelytocapturethegeneticvariationwhichoccursinpopulationswhichareadaptedtolocalenvironmentalcondition.Iyoucollectandthenplanttheprogenyoonlyonetreethereisariskoplantingscomprisinganarrowgenepool.Collectingromanumberoindividualtreeswillmaximisethegeneticvariabilityoaplantedsitesoalwaysattempttocollectromatleastfveindividualsothesamespecies.Seedtreatmentisrequiredtoenhancegerminationandreducethelikelihoodoseedpredationbyinvertebrates.Howeversomeruitsarequicklyattackedandeshyruitsharvestedromthegroundshouldbesoakedinwateror12-24hourspriortosowingtokillanyinsectswhichmayhavealreadybeguntoattacktheseed.Table11summarisesthemostcommontechniquesusedtopropagaterainorestseed.CommunitynurseriesacrosstheWetTropicsareidealplacestolearnmoreaboutnativeplantpropagationandmaintenance.Table11.SeedtreatmentstoenhancegerminationsuccessofrainforestspeciesFruittypeSpeciesexamplesTreatmentSeedsurroundedbyahardnutshellusuallywithaeshycoveringElaeocarpusbancroftiiAthertoniadiversifoliaAleuritesrockinghamensisRemoveeshplacethenutendtoendinaviceandturnslowlyuntilcracked.Seedcanberemovedromtheshellandsownresh.SingleseedsurroundedbyaeshycoveringSyzygiumspp.Endiandraspp.ArecaceaePalmsSoakinwateror12-24hourstodestroyinsectslarvae.Removeeshandsowimmediately.FleshyruitenclosingmanyseedsexceptfgsAcronychiaspp.Atractocarpusspp.Allowtheoutereshtosotenhastenthisbysoakinginwater.RemoveseedsandsowreshFleshyruitenclosingmanysmallseedsincludingfgsFicusspp.NaucleaorientalisAllowtheruittodryhastenthisbybreakingtheruitintoragments.Crumblethedriedmaterialandsow.SeedssurroundedbyanarilandenclosedinaleatherycapsuleMyristicaglobosassp.muelleriDiploglottisspp.Mischocarpusspp.Removecapsuleandarilsowresh.Specieswithveryeshyarilsmayrequiresoakingtokilloinsectslarvae.ConiersAraucariacunninghamiiAgathisspp.Collectwholeconesbeneaththeparenttree.Allowtheconestosplitandwingedseedstoseparateromtheconescales.SowreshPaper-likeseedsenclosedinadrycapsuleBuckinghamiaspp.Flindersiaspp.CardwelliasublimisPickcapsulesslightlygreenandallowthemtosplitinawarmdryplace.Removeseedsandsowresh.PioneerspecieswithenorceddormancyAcaciaspp.Alphitoniaspp.Placeseedsinboilingwater.SoakAcaciaspp1hrAlphitoniaspp24hoursthensow.Canbestored.Largeseeds60mmCastanospermumaustraleBeilschmiediabancroftiiRemoveanyeshycovering.Sowoneseeddirectlyintoanindividualpot.Grassesandgrass-likeplantsLomandraspp.Oplismenusspp.Pickasseedheadsbegintobrownandallowthemtosplitinawarmdryplace.Canbestored. RepairingtheRainforest9920.WHERETOFROMHEREThisbookprovidesthebasisorunderstandingtheecologicalrestorationprocessbuttherearemanyotherresourcesavailabletoanyoneinterestedindelvingmoredeeply.InnorthQueenslandtherearecommunitygroupsandgovernmentagencieswhichassistinavarietyowaysincludingdesigningandimplementingrestorationprojectshelpingwithtreesupplyandpracticaladviceaswellasprovidingundsandassistancepreparinggrantundingapplications.Someorganisationsoperatenurseryacilitiesspecialisingintheproductionoplantsorrestorationworksandmanyoervaluableopportunitiestoparticipateintherestorationprocess.SeedcollectionpropagationtreeplantingandpubliceducationareallskillswhichcanbeacquiredatlocationsacrosstheWetTropicsregionaswellasaccesstoexpertiseinconvenientlocations.Thetablebelowprovidesalistoregionalgroupsandorganisationsinvolvedinrestorationandorenvironmentalprotectionandtherangeoservicestheyprovide.AnyoneinvolvedinecologicalrestorationintheWetTropicswillneedtheadviceandassistanceotheseorganisationsatsomepointandmakingcontactisanidealfrststep.GroupBarronRiverCatchmentGroupCairnsandFarNorthEnvironmentCentreCAFNECCairnsRegionalCouncilNurseryMossmanCairnsRegionalCouncilNurseryStratordCassowaryCoastRegionalCouncilNurseryTullyCommunityorCoastalandCassowaryConservationC4MissionBeachDaintreeRegionCassowaryGroupIncTablelandsRegionalCouncilCommunityRevegetationUnitGirringunAboriginalCorporationCardwellMalandaLandcareGroupMitchellRiverWatershedManagementGroupIncQPWSRestorationServicesLakeEachamSocietyorGrowingAustralianPlantsTerrainNRMTreeKangarooandMammalGroupIncTreesortheEvelynandAthertonTablelandsIncTREATWetTropicsManagementAuthorityYungaburraLandcareGroupContactwww.barronriver.org.auwww.canec.org.au074044304407409994440740680055www.cassowaryconservation.asn.auwww.daintreecassowary.org.au0740965354www.girringun.com.auwww.terrain.org.auwww.mitchell-river.com.au0740953406www.sgapqld.org.auwww.terrain.org.auwww.tree-kangaroo.netwww.treat.net.auwww.wettropics.gov.auwww.terrain.org.auTherearearangeopublicationsthatoeradditionalinormationonecologicalrestorationrainorestecologyandplantidentifcation.ThetextslistedbelowarebothbroadgeneralpublicationsandmorespecialisedreerencematerialontheWetTropicsregion.BeasleyJ.2006.PlantsofTropicalNorthQueenslandthecompactguide.FootloosePublicationsKurandaAustraliaCalvertG.LokkersC.andCummingR.2005.RareandThreatenedPlantsoftheTownsvilleThuringowaRegion.CoastalDryTropicsLandcareIncTownsville. 100RepairingtheRainforestCramerV.A.andHobbsR.J.2007OldfeldsDynamicsandrestorationoabandonedarmland.IslandPressWashingtonCooperW.andCooperW.T.2013.AustralianRainorestFruitsafeldguide.CSIROPublishingErskineP.D.LambD.andBristowM.eds2005.ReorestationintheTropicsandSubtropicsUsingRainorestTreeSpecies.RIRDCPublicationNo05087RuralIndustriesResearchandDevelopmentCorporationCanberra.JackesB.R.2001.PlantsotheTropics-RainoresttoHeathanIdentifcationGuide.JamesCookUniversityTownsville.LottermoserB.G.andWillmottW.Eds2008.RocksLandscapesResourcesotheWetTropicsGeologicalSocietyoAustraliaIncBrisbane.NicholsonN.andNicholsonH.1985-2004AustralianRainorestPlantsVols1-6TeraniaCreekPublishingTheChannonNSW.QueenslandMuseum2000.WildlieoTropicalNorthQueensland.QueenslandMuseumBrisbane.ThejournalEcologicalManagementandRestorationisaquarterlypublicationaimedatresearchersandpractitionersengagedinecologicalrestoration.Thejournalproducesavarietyomaterialaccessibletoproessionalsandthelaymanandishighlyrecommended.FleckerBotanicalGardensinCairnsoertheopportunitytoseelivingspecimenswithnames.AroundtheParksandWildlieOfceonMcLeishRoadatLakeEachamareextensiveplantingsonorthQueenslandLauraceaeProteaceaeMoraceaeandMyrtaceae.AcollectiononorthQueenslandAraucariaceaecanbeseenatHalloransHillConservationParkinAthertonandtherearenamedbotanicalwalksatJamesCookUniversityLakeEachamandatMalandaFallsConservationPark.Suchresourcesprovideanidealwaytolearnmoreaboutlocalplantsandthehabitatsinwhichtheyoccur.Therearealsoproessionalbodieswhichoerarangeoservicesandmorespecialisedresources.TheSocietyorEcologicalRestorationAustralasiaisthelocalchapteroaworld-wideorganisationwhichoersawiderangeobeneftstomembersincludingregularpublicationsandawiderangeoreerencematerial.VisitSERAatwww.seraustralasia.com.Othernationalproessionalbodiesexistthatprovidesimilarspecialistservicestomembers.Theseorganisationsareshowninthetablebelow.FinallytherearemanywellestablishedecologicalrestorationprojectsacrosstheWetTropicsregionsomeover30yearsold.Suchplantingsarevaluablesourcesoinormationonspeciesperormanceandthere-establishmentoecologicalprocesses.OneotheoldestandlargestrestorationprojectsollowsthecourseothewalkingtrackalongtheAliceRiveratEubenangeeSwampNationalParknearMiriwinni.Yourlocalrestorationgroupcanadviseonotherprojectsinyourlocalarea.OrganisationAustralianAssociationoBushRegeneratorsAustralianNetworkorPlantConservationWetlandCareAustraliaGreeningAustraliaContactwww.aabr.org.auwww.anbg.gov.auanpcwww.wetlandcare.com.auwww.greeningaustralia.org.au RepairingtheRainforest101PART3.WHATTOPLANTWHEREItisnotpossibletooerdetailedprescriptionsowhattoplantateverytypeosite.Howeverthespecieslistswhichollowwillassistinspeciesselection.ThenomenclatureorallspecieslistedintheollowingchaptersollowsBostockandHolland2010.21.SPECIESSUITABLEFORRIPARIANPLANTINGSThespecieslistedinthischapteraresuitableorriparianrainorestrestorationintheWetTropicsoQueensland.Thelocationcolumninthelistprovidesguidanceastothealtitudezoneorwhichthespeciesismostsuitedandthestreambankpositionwhereitshouldbeplanted.SpeciesCommonnameLocationAcmenahemilamprassp.hemilampraBlushsatinashUpperandlowerbanksLowlandsandoothillsAcmenasmithiiLillypillyWatersedgeUplandstohighlands.SuitedtoopendegradedsitesrosttolerantAlstoniascholarisMilkypineUpperandlowerbanksLowlandsanduplandsArchontophoenixalexandraeAlexanderpalmWatersedgeMorecommononlowlandsitesbutextendsto800maslrostsensitiveAtractocarpustzalaniissp.tzalaniiNativegardeniaUpperandlowerbanksoodplainsLowlandsandoothillsBeilschmiediaobtusioliaBlushwalnutUpperandlowerbanksLowlandsonlyCaralliabrachiataCorkwoodUpperandlowerbanksLowlandsandoothillsCastanospermumaustraleBlackbeanUpperandlowerbanksandoodplainsLowlandsonlyCasuarinacunninghamianaRiveroakWatersedgeUplandsandhighlandsSuitedtoopendegradedsitesrosttolerantChionanthusramiforaNativeoliveUpperandlowerbanksLowlandsanduplandsCryptocaryatriplinervisBrownlaurelUpperandlowerbanksLowlandsanduplandsCyatheacooperiCooperstreeernAnymoistsite.Uplandstohighlands.FrosttolerantDilleniaalataRedbeechUpperandlowerbanksLowlandsonlyDysoxylumgaudichaudianumIvorymahoganyUpperlowerbanksandoodplainsLowlandsonlyElaeocarpusgrandisBluequandongLowerbanksLowlandsanduplandsrostsensitiveFicuscongestaWaterfgWatersedgeLowlandsuplandshighlandsFicusracemosaClusterfgUpperbanksandoodplainsLowlandsandoothillsFicussepticaSepticfgUpperandlowerbanksUplandsandhighlandsFicusvariegataGreenruitedfgUpperandlowerbanksLowlandsanduplandsGanophyllumalcatumScalyashUpperlowerbanksandoodplainsLowlandsonly 102RepairingtheRainforestGlochidionphilippicumButtonwoodUpperbankssuitedtoopendegradedsitesLowlandsanduplandsMelaleucaleucadendraNarrow-leapaperbarkWatersedgeLowlandsandoothillsMelaleucaviminalisWeepingbottlebrushWatersedgeUplandstohighlands.SuitedtoopendegradedsitesrosttolerantMelicopeelleryanaButterfytreeUpperandlowerbanksLowlandsanduplandsrostsensitiveMillettiapinnataIndianbeechUpperbanksandfoodplainsLowlandsonlyNaucleaorientalisLeichhardtpineWatersedgefoodplainsLowlandsPandanussolmslaubachiiPandanusAnymoistsiteLowlandsandoothillsSyzygiumangophoroidesLostdogWatersedgeLowlandsSyzygiumaustraleCreekcherryWatersedgeUplandstohighlands.SuitedtoopendegradedsitesrosttolerantSyzygiumtierneyanumRivercherryWatersedgeLowlandsoothillsanduplandsrostsensitiveTristaniopsisexiliforaKanukaboxWatersedgeLowlandsandoothillsdenotesedge-sealingspecies RepairingtheRainforest10322.SPECIESSUITABLEFORDIFFERENTENVIRONMENTALCONDITIONSThelistsospecieswhichollowcontainspeciesrecommendedoraparticularecologicalzonebasedonthestateactorsosoilclimateandaltitude.Manyspeciesoccuracrossanumberoecologicalzonesbuttherearenospecieswhichoccurineveryzone.EachzonecontainslistsappropriateoreitherFrameworkSpeciesorMaximumDiversityplantingapproaches.Thereareocoursemanymorespeciesthanthesewithineachzonethatcouldpotentiallybeplanted.Howeverthespeciesintheselistshavebeenselectedonthebasisotheirknownfeldperormancewithinthenominatedecologicalzone.Whilstallthesespeciesareknowntosurviveinaone-oplantingsomeMaximumDiversitymethodspeciespreersemi-shadeandmayestablishbetteriunder-plantedintoatwoorthreeyearoldplot.Bythistimelargerstemsareabletoprovideprotectiontothesesoterspecies.TYPESOFPLANTSLISTEDTheselistscontainmainlytreesandshrubsandsomepalms.Vineslianasandrattansarenotincludedorthreemainreasons.Firstlytheyarenoteasytomaintaininanurseryandrequirecuttingbackregularlyuntilplantingtime.Secondlymostotheseplantsrequireatrunkoroliagetoclimbandthiswillnotbeavailableuntilplantedtreesaretwotothreeyearsold.ThirdlyresearchhasshownthattheselieormsarewellrepresentedinthenaturalregenerationwithinrameworkspeciesplotsTuckerMurphy1997TuckerSimmons2009otenarrivinginthefrstwaveonaturalregeneration.IusingtheMaximumDiversitymethodcollectandgerminatelocalvinesandplantthemassmallseedlingsatthebaseogrowingstems.Indicativeruitingtimesareprovidedoreachspecies.Inasmallnumberospeciesruitingisnothighlysynchronisedanddierentindividualsinalocalpopulationmayproduceruitthroughouttheyear.Wherethereisasignifcantdierenceinripeningtimesbetweenzonesthisdierenceisreectedintherecommendedharvestperiod.Typicallythesearespecieswithawidedistributionwhichotenpresentriperuitsonthecoastallowlandstwoorthreemonthsearlierthantheuplandsorhighlands.Generallythemiddleothenominatedruitingperiodisthemostlikelytimetofndruitsbutthebestwayistofndthedesiredspeciesandobservethedevelopmentandripeningprocessuntilruitsarereadytoharvest.Careulattentiontoruitingperiodscanensuretheplantingwilleventuallyprovideayearroundsupplyoruitresources.FruitingtimesnominatedhavebeengleanedromauthorrecordstheQueenslandParksandWildlieServicesLakeEachamNurseryandCooperandCooper2004.Specieswhicharemoreadeptatsealingthemarginsoplantingsaremarkedwithanasterisk.Thesespeciesshouldpreerentiallybeestablishedonthemargin.BothFrameworkspeciesandMaximumDiversityspeciesmarkedwithanasteriskaresuitableorthisportionoasite.Howevertheycanalsobeplantedatotherlocationswithinthesite.DeterminingclimaticzoneafterTracey1982ZoneVerywetWetMoistDryMeanAnnualRainfall3000mm2000-3000mm1600-2000mm1300-1600mmRainfallDriest6Months750mm500-750mm300-500mm200-300mmDeterminingaltitudinalzoneafterTracey1982ZoneHighlandsUplandsFoothillsLowlandAltitudemetres800400-80040400040 104RepairingtheRainforestAltitudinalzoneClimaticzoneParentmaterialGroup3000mmVerywetAlluviumorcolluviumBasaltMetamorphicsGranitesandrhyolites1291212800metresHighlands1600-2000mmMoistAlluviumorcolluviumBasaltMetamorphicsGranitesandrhyolites1271212800metresHighlands20003000mmWetAlluviumorcolluviumBasaltMetamorphicsGranitesandrhyolites12101212800metresHighlands3000mmVerywetAlluviumorcolluviumBasaltMetamorphicsGranitesandrhyolites12101212Keytodeterminingtheenvironmentalsitegroups RepairingtheRainforest105INSET1INSET2INSET3bINSET4InnisfailRavenshoeAthertonMareebaMossmanCairnsCapeTribulationTownsvilleInghamTullyINSET3a147E147E146E146E145E145E16S16S17S17S18S18S19S19SGuidetoGroupsforSpeciesSelection0255075100CORALSEAGREATBARRIERREEFKilometresKEYTOGROUPSGroup1Group2Group3Group4Group5Group6Group7Group8Group9Group10Group11Group12NonRainforestHabitatsMainRoadWetTropicsBioregionWaterBodiesAltitudeZoneUplandsClimaticZoneWetGeologyAlluviumColluviumMetamorphicsGranitesorRhyolitesAltitudeZoneLowlandsClimaticZoneMoistGeologyAlluviumorColluviumAltitudeZoneFoothillsClimaticZoneMoistGeologyBasaltAltitudeZoneLowlands-FoothillsClimaticZoneWet-VeryWetGeologyAlluviumorColluviumAltitudeZoneLowlands-FoothillsClimaticZoneWet-VeryWetGeologyMetamorphicsGranitesorRhyolitesAltitudeZoneLowlands-FoothillsClimaticZoneWet-VeryWetGeologyBasaltAltitudeZoneFoothills-UplandsClimaticZoneMoistGeologyAlluviumColluviumMetamorphicsGranitesorRhyolitesAltitudeZoneUplands-HighlandsClimaticZoneMoistGeologyBasaltAltitudeZoneUplandsClimaticZoneWet-VeryWetGeologyBasaltAltitudeZoneHighlandsClimaticZoneWet-VeryWetGeologyBasaltAltitudeZoneLowlandsClimaticZoneMoist-Wet-VeryWetGeologyCoastalDunesAltitudeZoneUplands-HighlandsClimaticZoneMoist-Wet-VeryWetGeologyAlluviumColluviumMetamorphicsGranitesorRhyolites 106RepairingtheRainforestINSET1CapeTribulationAytonDaintreeRossvilleHelenvale16S16SGuidetoGroupsforSpeciesSelection04812CORALSEAKilometresGREATBARRIERREEFKEYTOGROUPSGroup1Group2Group3Group4Group5Group6Group7Group8Group9Group10Group11Group12NonRainforestHabitatsRoadWetTropicsBioregionWaterBodiesAltitudeZoneUplandsClimaticZoneWetGeologyAlluviumColluviumMetamorphicsGranitesorRhyolitesAltitudeZoneLowlandsClimaticZoneMoistGeologyAlluviumorColluviumAltitudeZoneFoothillsClimaticZoneMoistGeologyBasaltAltitudeZoneLowlands-FoothillsClimaticZoneWet-VeryWetGeologyAlluviumorColluviumAltitudeZoneLowlands-FoothillsClimaticZoneWet-VeryWetGeologyMetamorphicsGranitesorRhyolitesAltitudeZoneLowlands-FoothillsClimaticZoneWet-VeryWetGeologyBasaltAltitudeZoneFoothills-UplandsClimaticZoneMoistGeologyAlluviumColluviumMetamorphicsGranitesorRhyolitesAltitudeZoneUplands-HighlandsClimaticZoneMoistGeologyBasaltAltitudeZoneUplandsClimaticZoneWet-VeryWetGeologyBasaltAltitudeZoneHighlandsClimaticZoneWet-VeryWetGeologyBasaltAltitudeZoneLowlandsClimaticZoneMoist-Wet-VeryWetGeologyCoastalDunesAltitudeZoneUplands-HighlandsClimaticZoneMoist-Wet-VeryWetGeologyAlluviumColluviumMetamorphicsGranitesorRhyolites RepairingtheRainforest107INSET2MareebaCairnsDeeralAloombaWangettiWalkaminRedlynchLittleMulgraveBabindaKurandaEdmontonYarrabahGordonvaleWhiteRockSmithfieldYorkeysKnobCliftonBeachHollowaysBeach146E146E17S17SGuidetoGroupsforSpeciesSelection051015CORALSEAKilometresGREATBARRIERREEFKEYTOGROUPSGroup1Group2Group3Group4Group5Group6Group7Group8Group9Group10Group11Group12NonRainforestHabitatsRoadWetTropicsBioregionWaterBodiesAltitudeZoneUplandsClimaticZoneWetGeologyAlluviumColluviumMetamorphicsGranitesorRhyolitesAltitudeZoneLowlandsClimaticZoneMoistGeologyAlluviumorColluviumAltitudeZoneFoothillsClimaticZoneMoistGeologyBasaltAltitudeZoneLowlands-FoothillsClimaticZoneWet-VeryWetGeologyAlluviumorColluviumAltitudeZoneLowlands-FoothillsClimaticZoneWet-VeryWetGeologyMetamorphicsGranitesorRhyolitesAltitudeZoneLowlands-FoothillsClimaticZoneWet-VeryWetGeologyBasaltAltitudeZoneFoothills-UplandsClimaticZoneMoistGeologyAlluviumColluviumMetamorphicsGranitesorRhyolitesAltitudeZoneUplands-HighlandsClimaticZoneMoistGeologyBasaltAltitudeZoneUplandsClimaticZoneWet-VeryWetGeologyBasaltAltitudeZoneHighlandsClimaticZoneWet-VeryWetGeologyBasaltAltitudeZoneLowlandsClimaticZoneMoist-Wet-VeryWetGeologyCoastalDunesAltitudeZoneUplands-HighlandsClimaticZoneMoist-Wet-VeryWetGeologyAlluviumColluviumMetamorphicsGranitesorRhyolites 108RepairingtheRainforestINSET3InnisfailRavenshoeAthertonMareebaDeeralAloombaWalkaminInarlingaMenaCreekBartleFrereBramstonBeachLittleMulgraveBabindaMalandaEdmontonMourilyanHerbertonMiriwinniGordonvaleWhiteRockYungaburraMillaaMillaa146E146E17S17SGuidetoGroupsforSpeciesSelection06.51319.5CORALSEAKilometresKEYTOGROUPSGroup1Group2Group3Group4Group5Group6Group7Group8Group9Group10Group11Group12NonRainforestHabitatsRoadWetTropicsBioregionWaterBodiesAltitudeZoneUplandsClimaticZoneWetGeologyAlluviumColluviumMetamorphicsGranitesorRhyolitesAltitudeZoneLowlandsClimaticZoneMoistGeologyAlluviumorColluviumAltitudeZoneFoothillsClimaticZoneMoistGeologyBasaltAltitudeZoneLowlands-FoothillsClimaticZoneWet-VeryWetGeologyAlluviumorColluviumAltitudeZoneLowlands-FoothillsClimaticZoneWet-VeryWetGeologyMetamorphicsGranitesorRhyolitesAltitudeZoneLowlands-FoothillsClimaticZoneWet-VeryWetGeologyBasaltAltitudeZoneFoothills-UplandsClimaticZoneMoistGeologyAlluviumColluviumMetamorphicsGranitesorRhyolitesAltitudeZoneUplands-HighlandsClimaticZoneMoistGeologyBasaltAltitudeZoneUplandsClimaticZoneWet-VeryWetGeologyBasaltAltitudeZoneHighlandsClimaticZoneWet-VeryWetGeologyBasaltAltitudeZoneLowlandsClimaticZoneMoist-Wet-VeryWetGeologyCoastalDunesAltitudeZoneUplands-HighlandsClimaticZoneMoist-Wet-VeryWetGeologyAlluviumColluviumMetamorphicsGranitesorRhyolites RepairingtheRainforest109RavenshoeAthertonINSET3aMalandaHerbertonYungaburraMillaaMillaa14540E14540E14520E14520E1720S1720S1740S1740SKEYTOGROUPSGroup1Group2Group3Group4Group5Group6Group7Group8Group9Group10Group11Group12NonRainforestHabitatsRoadWetTropicsBioregionWaterBodiesAltitudeZoneUplandsClimaticZoneWetGeologyAlluviumColluviumMetamorphicsGranitesorRhyolitesAltitudeZoneLowlandsClimaticZoneMoistGeologyAlluviumorColluviumAltitudeZoneFoothillsClimaticZoneMoistGeologyBasaltAltitudeZoneLowlands-FoothillsClimaticZoneWet-VeryWetGeologyAlluviumorColluviumAltitudeZoneLowlands-FoothillsClimaticZoneWet-VeryWetGeologyMetamorphicsGranitesorRhyolitesAltitudeZoneLowlands-FoothillsClimaticZoneWet-VeryWetGeologyBasaltAltitudeZoneFoothills-UplandsClimaticZoneMoistGeologyAlluviumColluviumMetamorphicsGranitesorRhyolitesAltitudeZoneUplands-HighlandsClimaticZoneMoistGeologyBasaltAltitudeZoneUplandsClimaticZoneWet-VeryWetGeologyBasaltAltitudeZoneHighlandsClimaticZoneWet-VeryWetGeologyBasaltAltitudeZoneLowlandsClimaticZoneMoist-Wet-VeryWetGeologyCoastalDunesAltitudeZoneUplands-HighlandsClimaticZoneMoist-Wet-VeryWetGeologyAlluviumColluviumMetamorphicsGranitesorRhyolitesGuidetoGroupsforSpeciesSelection04812Kilometres 110RepairingtheRainforestFRAMEWORKSPECIESScientifcnameAleuritesrockinghamensisAlstoniascholarisArchontophoenixalexandraeArgyrodendronperalatumBeilschmiediaobtusioliaCaralliabrachiataChionanthusramiforaCryptocaryahypospodiaCryptocaryatriplinervisDysoxylumgaudichaudianumElaeocarpusgrandisFicusracemosavar.racemosaFicussepticaFicusvirensFlindersiaschottianaGlochidionphilippicumHomalanthusnovoguineensisMacarangatanariusMallotusphilippensisNaucleaorientalisPouteriaobovataPleiogyniumtimorensePolysciaselegansSyzygiumcormiforumTerminaliasericocarpaCommonnameCandlenutMilkypineAlexanderpalmRedtulipoakBlushwalnutCorkybarkNativeoliveNorthernlaurelBrownlaurelIvorymahoganyBluequandongClusterfgSepticfgWhitefgSilverashButtonwoodBleedingheartMacarangaRedkamalaLeichhardtspineYellowboxwoodBurdekinplumCelerywoodBumpysatinashDamsonplumFamilyEuphorbiaceaeApocynaceaeArecaceaeSterculiaceaeLauraceaeRhizophoraceaeOleaceaeLauraceaeLauraceaeMeliaceaeElaeocarpaceaeMoraceaeMoraceaeMoraceaeRutaceaePhyllanthaceaeEuphorbiaceaeEuphorbiaceaeEuphorbiaceaeRubiaceaeSapotaceaeAnacardiaceaeAraliaceaeMyrtaceaeCombretaceaeMay-JanDec-FebAllyearDec-MarJul-DecSep-NovSep-DecAug-FebNov-MarSep-FebMay-MarMay-JanFeb-JunAug-AprDec-MarJun-MarSep-AprSep-MarNov-AprJan-AprJan-MarMar-OctJun-NovAug-FebDec-FebGROUP1MOISTLOWLANDSONALLUVIUMIndicativeruitingtimesMAXIMUMDIVERSITYScientifcnameArgyrodendronpolyandrumAryteradivaricataBarringtoniacalyptrataBischoajavanicaBlepharocaryainvolucrigeraBuchananiaarborescensCanangaodorataCastanospermumaustraleCleistanthusapodusCryptocaryamackinnonianaDiploglottisdiphyllostegiaEndiandrasankeyanaFicusalbipilaFicuscopiosaGanophyllumalcatumJagerapseudorhusvar.integerrimaMillettiapinnataMyristicaglobosassp.muelleriParaserianthestoonaPodocarpusgrayaeXanthostemonwhiteiCommonnameBooyongRosetamarindMangopineJavacedarRosebutternutBuchananiaPerumetreeBlackbeanWeepingcleistanthusRustylaurelNortherntamarindSankeyswalnutFigwoodPlentiulfgScalyashPinktamarindPongamiaNutmegAcaciacedarBrownpineRedpendaFamilySterculiaceaeSapindaceaeLecythidaceaePhilydraceaeAnacardiaceaeAnacardiaceaeAnnonaceaeFabaceaePhyllanthaceaeLauraceaeSapindaceaeLauraceaeMoraceaeMoraceaeSapindaceaeSapindaceaeFabaceaeMyristicaceaeMimosaceaePodocarpaceaeMyrtaceaeNov-FebSep-DecDec-AugSep-OctSep-MarSep-FebNov-MarAllyearSep-MarAug-DecSep-NovMay-OctApr-NovAug-NovDec-FebJul-NovSep-AprSep-DecAug-SepOct-JanSep-JanIndicativeruitingtimesedgesealingspeciesedgesealingspecies RepairingtheRainforest111FRAMEWORKSPECIESCommonnameCandlenutSarsaparillaMilkypineRedtulipoakBlushwalnutCorkybarkBrowntamarindNativeoliveSnotty-gobbleBrownlaurelNortherntamarindMivamahoganyBluequandongPinkpoplarWaterfgSepticfgWhitefgGlossytamarindBleedingheartBandicootberryBrownbeechMacarangaRedkamalaWhitecedarBrownpittosporumYellowboxwoodCelerywoodDamsonplumPoisonpeachFamilyEuphorbiaceaeRhamnaceaeApocynaceaeSterculiaceaeLauraceaeRhizophoraceaeSapindaceaeOleaceaeBoraginaceaeLauraceaeSapindaceaeMeliaceaeElaeocarpaceaeAnacardiaceaeMoraceaeMoraceaeMoraceaeSapindaceaeEuphorbiaceaeVitaceaeLauraceaeEuphorbiaceaeEuphorbiaceaeMeliaceaePittosporaceaeSapotaceaeAraliaceaeCombretaceaeUlmaceaeMay-JanOct-JanDec-FebDec-MarJul-DecSep-NovNov-FebSep-DecOct-FebNov-MarSep-NovOct-FebMay-MarNov-FebAllyearFeb-JunAug-AprNov-JanSep-AprDec-MayOct-JanSep-MarNov-AprNov-MarNov-MarMay-NovJun-NovDec-FebNov-MayGROUP2MOISTFOOTHILLSONBASALTIndicativeruitingtimesMAXIMUMDIVERSITYCommonnameNativehollyTulipsirisRosetamarindMangopineFlametreeBuchananiaBlackbeanSnotty-gobbleWhitetamarindSmithstamarindCopperlaurelQueenslandmapleLittleevodiaNutmegRedsilkwoodRobertstuckerooBumpysatinashRedcedarFamilyUlmaceaeMimosaceaeSapindaceaeLecythidaceaeSterculiaceaeAnacardiaceaeFabaceaeBoraginaceaeSapindaceaeSapindaceaeEupomatiaceaeRutaceaeRutaceaeMyristicaceaeSapotaceaeSapindaceaeMyrtaceaeMeliaceaeDec-AprDec-JanSep-DecDec-AugApr-DecSep-FebAllyearOct-FebOct-JanNov-FebApr-AugJun-JanFeb-MaySep-DecOct-FebOct-FebAug-FebOct-JanIndicativeruitingtimesedgesealingspeciesedgesealingspeciesScientifcnameAleuritesrockinghamensisAlphitoniaoblataAlstoniascholarisArgyrodendronperalatumBeilschmiediaobtusioliaCaralliabrachiataCastanosporaalphandiiChionanthusramiforaCordiadichotomaCryptocaryatriplinervisDiploglottisdiphyllostegiaDysoxylummollissimumssp.molleElaeocarpusgrandisEuroschinusalcatavar.alcataFicuscongestavar.congestaFicussepticaFicusvirensGuioaacutioliaHomalanthusnovoguineensisLeeaindicaLitseaawcettianaMacarangatanariusMallotusphilippensisMeliaazedarachPittosporumvenulosumPlanchonellamyrsinodendronPolysciaselegansTerminaliasericocarpaTrematomentosavar.viridisScientifcnameAphananthephilippinensisArchidendronhendersoniiAryteradivaricataBarringtoniacalyptrataBrachychitonacerioliusBuchananiaarborescensCastanospermumaustraleCordiadichotomaCupaniopsisoveolataDiploglottissmithiiEupomatialaurinaFlindersiabrayleyanaMelicoperubraMyristicaglobosassp.muelleriPalaquiumgalactoxylonRhysotoechiarobertsoniiSyzygiumcormiforumToonaciliata 112RepairingtheRainforestFRAMEWORKSPECIESScientifcnameAcmenahemilamprassp.hemilampraAleuritesrockinghamensisAlphitoniaoblataAlstoniascholarisArchontophoenixalexandraeBeilschmiediaobtusioliaBreyniacernuaCaralliabrachiataCardwelliasublimisCastanosporaalphandiiChionanthusramiforaClaoxylontenerioliumCryptocaryahypospodiaCryptocaryatriplinervisDysoxylumgaudichaudianumDysoxylummollissimumssp.molleElaeocarpusgrandisFicuscongestavar.congestaFicusdestruensFicusracemosavar.racemosaFicussepticaFicusvariegataFicusvirensGanophyllumalcatumGlochidionphilippicumHomalanthusnovoguineensisLeeaindicaLitsealeeeanaMacarangainvolucratavar.mallotoidesMacarangatanariusMeliaazedarachMelicopexanthoxyloidesMelicopeelleryanaPlanchonellamyrsinodendronPolysciaselegansRhodamniasessiliforaRhustaitensisSymplocoscochinchinensisvar.pilosiusculaTerminaliasericocarpaCommonnameBlushsatinashCandlenutSarsaparillaMilkypineAlexanderpalmBlushwalnutCoeebushCorkybarkNorthernsilkyoakBrowntamarindNativeoliveQldbrittlewoodNorthernlaurelBrownlaurelIvorymahoganyMivamahoganyBluequandongWaterfgRusty-leavedfgClusterfgSepticfgGreenruitedfgWhitefgScalyashButtonwoodBleedingheartBandicootberryBrownbollywoodMacarangaMacarangaWhitecedarYellowevodiaCorkwoodYellowboxwoodCelerywoodIronmalletwoodSumacWhitehazelwoodDamsonplumFamilyMyrtaceaeEuphorbiaceaeRhamnaceaeApocynaceaeArecaceaeLauraceaePhyllanthaceaeRhizophoraceaeProteaceaeSapindaceaeOleaceaeEuphorbiaceaeLauraceaeLauraceaeMeliaceaeMeliaceaeElaeocarpaceaeMoraceaeMoraceaeMoraceaeMoraceaeMoraceaeMoraceaeSapindaceaePhyllanthaceaeEuphorbiaceaeVitaceaeLauraceaeEuphorbiaceaeEuphorbiaceaeMeliaceaeRutaceaeRutaceaeSapotaceaeAraliaceaeMyrtaceaeAnacardiaceaeSymplocaceaeCombretaceaeMar-JulMay-JanOct-JanDec-FebAllyearJul-DecAllyearSep-NovOct-FebNov-FebSep-DecAug-JanAug-FebNov-MarSep-FebSep-FebMay-MarAllyearNov-FebMay-JanFeb-JunNov-JulAug-AprDec-JanJun-MarSep-AprDec-MayJun-NovNov-MarSep-MarNov-MarApr-AugApr-AugMay-NovJun-NovDec-MayFeb-NovOct-DecDec-FebGROUP3WETTOVERYWETLOWLANDSANDFOOTHILLSONALLUVIUMIndicativeruitingtimesMAXIMUMDIVERSITYScientifcnameAcronychiaacidulaAcronychiavestitaAntidesmaerostreArchidendronhendersoniiArchidendronvaillantiiAryteradivaricataAryterapauciforaAtractocarpustzalaniissp.tzalaniiBarringtoniacalyptrataBarringtoniaracemosaCommonnameLemonaspenWhiteaspenCurrantwoodTulipsirisSalmonbeanRosetamarindSmallleatamarindBrowngardeniaMangopineBarringtoniaFamilyRutaceaeRutaceaePhyllanthaceaeMimosaceaeMimosaceaeSapindaceaeSapindaceaeRubiaceaeLecythidaceaeLecythidaceaeApr-AugJun-OctJan-NovDec-JanJan-JunSep-DecAug-JanMay-OctDec-AugMar-AprIndicativeruitingtimesedgesealingspecies RepairingtheRainforest113edgesealingspeciesScientifcnameCommonnameFamilyIndicativeruitingtimesBeilschmiediabancrotiiBrachychitonacerioliusCanangaodorataCanariumaustralianumCastanospermumaustraleCerberaforibundaCleistanthusapodusCryptocaryamackinnonianaCryptocaryamurrayiCryptocaryaoblataDarlingiadarlingianaDecaspermumhumileDeplancheatetraphyllaDilleniaalataDiploglottissmithiiDysoxylumparasiticumElaeocarpusbancrotiiElaeocarpusoveolatusEndiandrasankeyanaEupomatialaurinaFicuscopiosaFicusmicrocarpaFlindersiabourjotianaFlindersiaschottianaGmelinadalrympleanaGmelinaasciculiforaGrevilleabaileyanaHelicianortonianaHibiscustiliaceusHollandaeasayerianaHomaliumcircumpinnatumIdiospermumaustralienseMacarangasubdentataMillettiapinnataMischocarpuslachnocarpusMyristicaglobosassp.muelleriOrmosiaormondiiOstreariaaustralianaPalaquiumgalactoxylonPhaleriaclerodendronPilidiostigmatropicumPrunusturnerianaPtychospermaelegansRhysotoechiarobertsoniiRistantiapachyspermaScolopiabrauniiSloanealangiiSynimacordierorumSyzygiumalliiligneumSyzygiumangophoroidesSyzygiumcormiforumSyzygiumbrosumSyzygiumgustavioidesSyzygiumkurandaSyzygiumluehmanniiSyzygiumsayeriTernstroemiacherryiWaterhouseahedraiophyllaYellowwalnutFlametreePerumetreeScrubturpentineBlackbeanGreymilkwoodWeepingcleistanthusRustylaurelMurrayslaurelTarzalisilkwoodBrownsilkyoakBrownmyrtleBignoniaRedbeechSmithstamarindSpurmahoganyKurandaquandongNorthernquandongSankeyswalnutCopperlaurelPlentiulfgSmallruitedfgQueenslandsilverashSilverashWhitebeechNorthernWhitebeechFindlayssilkyoakNortonssilkyoakCoastcottonwoodMuellersoakBrownboxwoodRibbonwoodNeedlebarkPongamiaWoollypearruitNutmegYellowbeanHardpinkalderRedsilkwoodScenteddaphneApricotmyrtleAlmondbarkSolitairepalmRobertstuckerooYellowpendaFlintwoodWhitecarabeenSynimaOnionwoodLostdogBumpysatinashFibroussatinashWatergumKurandasatinashCherrysatinashPinksatinashBeachcherryRedsatinashLauraceaeSterculiaceaeAnnonaceaeBurseraceaeFabaceaeApocynaceaePhyllanthaceaeLauraceaeLauraceaeLauraceaeProteaceaeMyrtaceaeBignoniaceaeDilleniaceaeSapindaceaeMeliaceaeElaeocarpaceaeElaeocarpaceaeLauraceaeEupomatiaceaeMoraceaeMoraceaeRutaceaeRutaceaeVerbenaceaeVerbenaceaeProteaceaeProteaceaeMalvaceaeProteaceaeFlacourtiaceaeIdiospermaceaeEuphorbiaceaeFabaceaeSapindaceaeMyristicaceaeFabaceaeHamamelidaceaeSapotaceaeThymelaeaceaeMyrtaceaeRosaceaeArecaceaeSapindaceaeMyrtaceaeFlacourtiaceaeElaeocarpaceaeSapindaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeTheaceaeMyrtaceaeOct-AugApr-DecNov-MarJun-OctAllyearJan-OctSep-MarAllyearOct-DecNov-AprNov-JanMay-SepNov-DecSep-FebNov-FebNov-FebFeb-AprJul-JanMay-OctApr-AugJan-NovJan-JunNov-AprDec-MarJan-AprDec-MarOct-FebAllyearNov-FebDec-MarNov-FebJun-OctNov-JulSep-AprDec-JulAug-DecOct-AprNov-AprOct-FebAug-MayDec-MarJul-NovApr-NovOct-FebOct-JanDec-MarJun-JanDec-JanMay-OctNov-AprAug-FebSep-FebMay-SepMay-AugNov-AprNov-MarAllyearJan-Mar 114RepairingtheRainforestFRAMEWORKSPECIESScientifcnameAcaciacelsaAleuritesrockinghamensisAlphitoniaoblataAlstoniascholarisArchontophoenixalexandraeBackhousiabancrotiiBeilschmiediaobtusioliaCaralliabrachiataCardwelliasublimisChionanthusramiforaCryptocaryahypospodiaCryptocaryamurrayiDysoxylummollissimumssp.molleElaeocarpusgrandisFicuscongestavar.congestaFicusdrupaceaFicusracemosavar.racemosaGlochidionphilippicumGrevilleabaileyanaHelicianortonianaHomalanthusnovoguineensisLeeaindicaLitsealeeeanaMeliaazedarachMelicopeelleryanaMelicopexanthoxyloidesNeolitseadealbataPlanchonellamyrsinodendronPolysciaselegansRhustaitensisSymplocoscochinchinensisvar.pilosiusculaTerminaliasericocarpaTrematomentosavar.viridisCommonnameBrownsalwoodCandlenutSarsaparillaMilkypineAlexanderpalmJohnstoneR.hardwoodBlushwalnutCorkybarkNorthernsilkyoakNativeoliveNorthernlaurelMurrayslaurelMivamahoganyBluequandongWaterfgDrupefgClusterfgButtonwoodFindlayssilkyoakNortonssilkyoakBleedingheartBandicootberryBrownbollywoodWhitecedarCorkwoodYellowevodiaWhitebollywoodYellowboxwoodCelerywoodSumacWhitehazelwoodDamsonplumPoisonpeachFamilyMimosaceaeEuphorbiaceaeRhamnaceaeApocynaceaeArecaceaeMyrtaceaeLauraceaeRhizophoraceaeProteaceaeOleaceaeLauraceaeLauraceaeMeliaceaeElaeocarpaceaeMoraceaeMoraceaeMoraceaePhyllanthaceaeProteaceaeProteaceaeEuphorbiaceaeVitaceaeLauraceaeMeliaceaeRutaceaeRutaceaeLauraceaeSapotaceaeAraliaceaeAnacardiaceaeSymplocaceaeCombretaceaeUlmaceaeOct-FebMay-JanOct-JanDec-FebAllyearSep-JanJul-DecSep-NovOct-FebSep-DecAugFebOct-DecOct-FebMay-MarAllyearJan-SeptMay-JanJun-MarOct-FebAllyearSep-AprDec-MayJun-NovNov-MarApr-AugApr-AugOct-MayMay-NovJun-NovFeb-NovOct-DecDec-FebNov-MayGROUP4WETTOVERYWETLOWLANDSANDFOOTHILLSONMETAMORPHICSANDGRANITESIndicativeruitingtimesedgesealingspecies RepairingtheRainforest115MAXIMUMDIVERSITYScientifcnameAntidesmaerostreAtractocarpustzalaniissp.tzalaniiBarringtoniacalyptrataBeilschmiediabancrotiiBrachychitonacerioliusBuchananiaarborescensCanangaodorataCarnarvoniaaraliioliaCastanospermumaustraleCerberaforibundaCryptocaryamackinnonianaCryptocaryamurrayiDarlingiadarlingianaDavidsoniapruriensDecaspermumhumileDeplancheatetraphyllaDilleniaalataDysoxylumpapuanumDysoxylumparasiticumElaeocarpusbancrotiiElaeocarpusoveolatusElaeocarpusstellarisEndiandrahypotephraEndiandrasankeyanaEupomatialaurinaFicussepticaFicusvariegataFlindersiabourjotianaGanophyllumalcatumGmelinaasciculiforaGossiadallachianaJagerapseudorhusvar.integerrimaLitseabindonianaMallotuspolyadenosMyristicaglobosassp.muelleriOrmosiaormondiiPalaquiumgalactoxylonPilidiostigmatropicumPodocarpusgrayaePrunusturnerianaPtychospermaelegansRhysotoechiarobertsoniiRistantiapachyspermaScolopiabrauniiSyzygiumalliiligneumSyzygiumcormiforumSyzygiumbrosumSyzygiumkurandaSyzygiumluehmanniiSyzygiumsayeriToonaciliataWaterhouseaunipunctataXanthostemonwhiteiCommonnameCurrantwoodBrowngardeniaMangopineYellowwalnutFlametreeBuchananiaPerumetreeCaledonianoakBlackbeanGreymilkwoodRustylaurelMurrayslaurelBrownsilkyoakDavidsonsplumBrownmyrtleBignoniaRedbeechSpicymahoganySpurmahoganyKurandaquandongNorthernquandongStarquandongRosewalnutSankeyswalnutCopperlaurelSepticfgGreenruitedfgQueenslandsilverashScalyashNorthernwhitebeechLignumPinktamarindBigleabollywoodKamalaNutmegYellowbeanRedsilkwoodApricotmyrtleBrownpineAlmondbarkSolitairepalmRobertstuckerooYellowpendaFlintwoodOnionwoodBumpysatinashFibroussatinashKurandasatinashCherrysatinashPinksatinashRedcedarRolypolysatinashRedpendaFamilyPhyllanthaceaeRubiaceaeLecythidaceaeLauraceaeSterculiaceaeAnacardiaceaeAnnonaceaeProteaceaeFabaceaeApocynaceaeLauraceaeLauraceaeProteaceaeDavidsoniaceaeMyrtaceaeBignoniaceaeDilleniaceaeMeliaceaeMeliaceaeElaeocarpaceaeElaeocarpaceaeElaeocarpaceaeLauraceaeLauraceaeEupomatiaceaeMoraceaeMoraceaeRutaceaeSapindaceaeVerbenaceaeMyrtaceaeSapindaceaeLauraceaeEuphorbiaceaeMyristicaceaeFabaceaeSapotaceaeMyrtaceaePodocarpaceaeRosaceaeArecaceaeSapindaceaeMyrtaceaeFlacourtiaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMeliaceaeMyrtaceaeMyrtaceaeJan-NovMay-OctDec-AugOct-AugApr-DecSep-FebNov-FebSep-MarAllyearJan-OctAllyearOct-DecNov-JanAllyearMay-SepNov-DecSep-FebOct-FebNov-FebFeb-AprJul-JanSep-JanAug-NovMay-OctApr-AugFeb-JunNov-JulNov-AprDec-JanDec-MarAllyearJul-NovOct-DecAllyearAug-DecOct-AprNov-JanDec-MarOct-JanJul-DecApr-NovOct-FebOct-JanDec-MarMay-OctAug-FebSep-FebMay-AugNov-AprNov-MarOct-JanJun-DecSep-JanIndicativeruitingtimesedgesealingspecies 116RepairingtheRainforestGROUP5WETTOVERYWETLOWLANDSANDFOOTHILLSONBASALTFRAMEWORKSPECIESScientifcnameAleuritesrockinghamensisAlphitoniaoblataAlstoniascholarisArchontophoenixalexandraeArgyrodendronperalatumBeilschmiediaobtusioliaBreyniacernuaCaralliabrachiataCardwelliasublimisCastanosporaalphandiiClaoxylontenerioliumCryptocaryahypospodiaCryptocaryatriplinervisDysoxylummollissimumssp.molleElaeocarpusgrandisFicuscongestavar.congestaFicusdestruensFicusracemosavar.racemosaFicussepticaFicusvariegataFicusvirensFlindersiabrayleyanaFlindersiapimentelianaGlochidionphilippicumGuioalasioneuraHomalanthusnovoguineensisLeeaindicaLitsealeeeanaMacarangatanariusMelicopeelleryanaNeolitseadealbataPlanchonellamyrsinodendronPolysciasaustralianaPolysciaselegansPrunusturnerianaRhodamniasessiliforaSloaneamacbrydeiSymplocoscochinchinensisvar.pilosiusculaSyzygiumcormiforumSyzygiumsayeriTerminaliasericocarpaTrematomentosavar.viridisCommonnameCandlenutSarsaparillaMilkypineAlexanderpalmRedtulipoakBlushwalnutCoeebushCorkybarkNorthernsilkyoakBrowntamarindQldBrittlewoodNorthernlaurelBrownlaurelMivamahoganyBluequandongWaterfgRusty-leavedfgClusterfgSepticfgGreenruitedfgWhitefgQueenslandmapleMaplesilkwoodButtonwoodSilkytamarindBleedingheartBandicootberryBrownbollywoodMacarangaCorkwoodWhitebollywoodYellowboxwoodIvorybasswoodCelerywoodAlmondbarkIronmalletwoodGreycarabeenWhitehazelwoodBumpysatinashPinksatinashDamsonplumPoisonpeachFamilyEuphorbiaceaeRhamnaceaeApocynaceaeArecaceaeSterculiaceaeLauraceaePhyllanthaceaeRhizophoraceaeProteaceaeSapindaceaeEuphorbiaceaeLauraceaeLauraceaeMeliaceaeElaeocarpaceaeMoraceaeMoraceaeMoraceaeMoraceaeMoraceaeMoraceaeRutaceaeRutaceaePhyllanthaceaeSapindaceaeEuphorbiaceaeVitaceaeLauraceaeEuphorbiaceaeRutaceaeLauraceaeSapotaceaeAraliaceaeAraliaceaeRosaceaeMyrtaceaeElaeocarpaceaeSymplocaceaeMyrtaceaeMyrtaceaeCombretaceaeUlmaceaeMay-JanOct-JanDec-FebAllyearDec-MarJul-DecAllyearSep-NovOct-FebNov-FebAug-JanAug-FebNov-MarOct-FebMay-MarAllyearNov-FebMay-JanFeb-JunNov-JulOct-JunJun-JanSep-DecJun-MarNov-MarSep-AprDec-MayJun-NovSep-MarApr-AugOct-MayMay-NovDec-MarJun-NovJul-DecDec-MaySep-MarOct-DecAug-FebNov-MarDec-FebNov-MayIndicativeruitingtimesedgesealingspecies RepairingtheRainforest117MAXIMUMDIVERSITYScientifcnameAcmenagraveolensAcronychiaacidulaAcronychiavestitaAryteradivaricataAryterapauciforaBackhousiabancrotiiBarringtoniacalyptrataBarringtoniaracemosaBrachychitonacerioliusCanangaodorataCastanospermumaustraleCerberaforibundaCryptocaryamackinnonianaCryptocaryamurrayiCryptocaryaoblataDarlingiadarlingianaDiploglottissmithiiDysoxylumpapuanumDysoxylumparasiticumElaeocarpusbancrotiiEndiandrahypotephraEndiandrainsignisEndiandrasankeyanaEupomatialaurinaFicuscopiosaFicushispidaFicuspleurocarpaFlindersiabourjotianaGanophyllumalcatumGmelinaasciculiforaGossiadallachianaHelicianortonianaHollandaeasayerianaMyristicaglobosassp.muelleriOstreariaaustralianaPalaquiumgalactoxylonPhaleriaclerodendronPilidiostigmatropicumPitaviasterhaplophyllusPrunusturnerianaSloanealangiiSyzygiumalliiligneumSyzygiumcormiforumSyzygiumgustavioidesSyzygiumkurandaTernstroemiacherryiCommonnameCassowarysatinashLemonaspenWhiteaspenRosetamarindSmallleatamarindJohnstoneRiverhardwoodMangopineBarringtoniaFlametreePerumetreeBlackbeanGreymilkwoodRustylaurelMurrayslaurelTarzalisilkwoodBrownsilkyoakSmithstamarindSpicymahoganySpurmahoganyKurandaquandongRosewalnutHairywalnutSankeyswalnutCopperlaurelPlentiulfgHairyfgBananafgQueenslandsilverashScalyashNorthernWhitebeechLignumNortonssilkyoakMuellersoakNutmegHardpinkalderRedsilkwoodScenteddaphneApricotmyrtleYellowaspenAlmondbarkWhitecarabeenOnionwoodBumpysatinashWatergumKurandasatinashCherrybeechFamilyMyrtaceaeRutaceaeRutaceaeSapindaceaeSapindaceaeMyrtaceaeLecythidaceaeLecythidaceaeSterculiaceaeAnnonaceaeFabaceaeApocynaceaeLauraceaeLauraceaeLauraceaeProteaceaeSapindaceaeMeliaceaeMeliaceaeElaeocarpaceaeLauraceaeLauraceaeLauraceaeEupomatiaceaeMoraceaeMoraceaeMoraceaeRutaceaeSapindaceaeVerbenaceaeMyrtaceaeProteaceaeProteaceaeMyristicaceaeHamamelidaceaeSapotaceaeThymelaeaceaeMyrtaceaeRutaceaeRosaceaeElaeocarpaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeTheaceaeApr-NovApr-AugJun-OctSep-DecAug-JanSep-JanDec-AugMar-AprApr-DecNov-MarAllyearJan-OctAllyearOct-DecNov-AprNov-JanNov-FebOct-FebNov-FebFeb-AprAug-NovOct-AugMay-OctApr-AugJan-NovAllyearAllyearNov-AprDec-JanDec-MarAllyearAllyearDec-MarAug-DecNov-AprNov-JanAug-MayDec-MarFeb-AugJul-DecJun-JanMay-OctAug-FebMay-SepMay-AugAllyearIndicativeruitingtimesedgesealingspecies 118RepairingtheRainforestGROUP6MOISTUPLANDSONALLUVIUMCOLLUVIUMMETAMORPHICSANDGRANITESFRAMEWORKSPECIESScientifcnameAleuritesrockinghamensisAlphitoniawhiteiAlstoniascholarisArchirhodomyrtusbeckleriCardwelliasublimisCastanosporaalphandiiCryptocaryatriplinervisElaeocarpusgrandisEuroschinusalcatavar.alcataFicusleptocladaFicusobliquaFicussepticaFicussuperbaFicusvirensFicuswatkinsianaFlindersiapimentelianaGanophyllumalcatumGlochidionharveyanumGlochidionsumatranumGmelinaasciculiforaGrevilleabaileyanaGuioaacutioliaGuioalasioneuraHelicianortonianaHomalanthusnovoguineensisLitsealeeeanaMallotusphilippensisMeliaazedarachMelicopeelleryanaNeolitseadealbataPlanchonellamyrsinodendronPolysciaselegansPulleastutzeriRhodamniasessiliforaSyzygiumcormiforumTerminaliasericocarpaCommonnameCandlenutRedashMilkypineRosemyrtleNorthernsilkyoakBrowntamarindBrownlaurelBluequandongPinkpoplarAthertonFigFigwoodSepticfgSuperbfgWhitefgWatkinsfgMaplesilkwoodScalyashButtonwoodButtonwoodNorthernWhitebeechFindlayssilkyoakGlossytamarindSilkytamarindNortonssilkyoakBleedingheartBrownbollywoodRedkamalaWhitecedarCorkwoodWhitebollywoodYellowboxwoodCelerywoodHardalderIronmalletwoodBumpysatinashDamsonplumFamilyEuphorbiaceaeRhamnaceaeApocynaceaeMyrtaceaeProteaceaeSapindaceaeLauraceaeElaeocarpaceaeAnacardiaceaeMoraceaeMoraceaeMoraceaeMoraceaeMoraceaeMoraceaeRutaceaeSapindaceaePhyllanthaceaePhyllanthaceaeVerbenaceaeProteaceaeSapindaceaeSapindaceaeProteaceaeEuphorbiaceaeLauraceaeEuphorbiaceaeMeliaceaeRutaceaeLauraceaeSapotaceaeAraliaceaeCunoniaceaeMyrtaceaeRutaceaeCombretaceaeApr-DecJan-AprDec-FebSep-FebOct-FebNov-FebNov-MarMar-DecNov-FebOct-MarAllyearFeb-JunAllyearOct-JunAug-AprSep-DecDec-FebDec-AprNov-FebDec-MarOct-FebNov-JanNov-MarMay-DecSep-AprJun-NovNov-AprNov-MarApr-AugJan-JunMay-NovJun-NovDec-MayDec-MayAug-FebDec-FebIndicativeruitingtimesedgesealingspeciesMAXIMUMDIVERSITYScientifcnameAcronychiaacidulaAgathisrobustaAlloxylonwickhamiiAntidesmaerostreArchidendronhendersoniiAryteradivaricataAthertoniadiversioliaBeilschmiediaobtusioliaBlepharocaryainvolucrigeraBrachychitonacerioliusCommonnameLemonaspenQueenslandkauriSatinoakCurrantwoodTulipsirisRosetamarindAthertonoakBlushwalnutRosebutternutFlametreeFamilyRutaceaeAraucariaceaeProteaceaePhyllanthaceaeMimosaceaeSapindaceaeProteaceaeLauraceaeAnacardiaceaeSterculiaceaeApr-AugNov-FebAug-OctJan-NovDec-JanSep-DecOct-FebAug-NovSep-MarApr-DecIndicativeruitingtimes RepairingtheRainforest119ScientifcnameCommonnameFamilyIndicativeruitingtimesBuckinghamiacelsissimaCarnarvoniaaraliioliaCastanospermumaustraleCerberainfataCryptocaryacorrugataCryptocaryamackinnonianaDarlingiadarlingianaDavidsoniapruriensDecaspermumhumileDiospyroscupulosaDysoxylummollissimumssp.molleElaeocarpusbancrotiiElaeocarpuslargiforensssp.largiforensElaeocarpusruminatusEndiandrahypotephraEndiandrasankeyanaFicushispidaFicusdestruensFlindersiabourjotianaFlindersiaschottianaGalbulimimabaccataGmelinaasciculiforaGossiadallachianaGrevilleahillianaHarpulliapendulaHomaliumcircumpinnatumJagerapseudorhusvar.integerrimaLitseabindonianaLitseaconnorsiiMelicoperubraMischaryteralautererianaMischocarpuslachnocarpusMischocarpuspyriormisssp.pyriormisMyristicaglobosassp.muelleriOpisthiolepisheterophyllaParaserianthestoonaPhaleriaclerodendronPodocarpusgrayaePrunusturnerianaRhysotoechiarobertsoniiScolopiabrauniiSloanealangiiStenocarpussinuatusSundacarpusamarusSyzygiumcormiforumSyzygiumcryptophlebiumSyzygiumendophloiumSyzygiumjohnsoniiSyzygiumkurandaSyzygiumluehmanniiSyzygiumpapyraceumTernstroemiacherryiXanthostemonwhiteiSpottedsilkyoakCaledonianoakBlackbeanGreymilkwoodCorduroylaurelRustylaurelBrownsilkyoakDavidsonsplumBrownmyrtleEbonyMivamahoganyKurandaquandongTropicalquandongBrownquandongRosewalnutSankeyswalnutHairyfgRusty-leavedfgQueenslandsilverashSilverashMagnoliaNorthernWhitebeechLignumHillssilkyoakTulipwoodBrownboxwoodPinktamarindBigleabollywoodBollywoodLittleevodiaCorduroytamarindWoollypearruitTamarindNutmegBlushsilkyoakAcaciacedarScenteddaphneBrownpineAlmondbarkRobertstuckerooFlintwoodWhitecarabeenWheelofreBlackpineBumpysatinashPlumsatinashBarkinthewoodRosesatinashKurandasatinashCherrysatinashPaperbarksatinashCherrybeechRedpendaProteaceaeProteaceaeFabaceaeApocynaceaeLauraceaeLauraceaeProteaceaeDavidsoniaceaeMyrtaceaeEbenaceaeMeliaceaeElaeocarpaceaeElaeocarpaceaeElaeocarpaceaeLauraceaeLauraceaeMoraceaeMoraceaeRutaceaeRutaceaeHimantandraceaeVerbenaceaeMyrtaceaeProteaceaeSapindaceaeFlacourtiaceaeSapindaceaeLauraceaeLauraceaeRutaceaeSapindaceaeSapindaceaeSapindaceaeMyristicaceaeProteaceaeMimosaceaeThymelaeaceaePodocarpaceaeRosaceaeSapindaceaeFlacourtiaceaeElaeocarpaceaeProteaceaePodocarpaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeTheaceaeMyrtaceaeMay-NovSep-MarAllyearOctJanJun-JanMay-JanNov-JanAllyearJul-NovJun-NovOct-FebFeb-AprNov-MarMar-SepSep-NovMay-OctAllyearNov-AprFeb-DecDec-MarFeb-SepDec-MarAllyearJan-MarMar-DecNov-FebJul-NovOct-DecOct-DecFeb-MayOct-DecDec-JulDec-JunAug-DecAug-NovJul-SepJan-JunOct-JanJul-JanOct-FebDec-MarSep-AprDec-JanDec-MarAug-FebSep-JanSep-FebSep-MarAug-NovNov-AprDec-FebAllyearSep-Janedgesealingspecies 120RepairingtheRainforestGROUP7MOISTUPLANDSANDHIGHLANDSONBASALTFRAMEWORKSPECIESScientifcnameAleuritesrockinghamensisAlphitoniawhiteiAlstoniascholarisArgyrodendronperalatumArgyrodendrontrioliolatumCardwelliasublimisCastanosporaalphandiiCordiadichotomaCryptocaryahypospodiaCryptocaryatriplinervisElaeocarpuscoorangoolooElaeocarpusgrandisEuroschinusalcatavar.alcataFicuscongestavar.congestaFicusdestruensFicushispidaFicusleptocladaFicussepticaFicussuperbaFicusvirensFlindersiaschottianaGlochidionharveyanumGuioaacutioliaGuioalasioneuraHelicianortonianaHomalanthusnovoguineensisLeeaindicaLitsealeeeanaMallotusmollissimusMallotusphilippensisMeliaazedarachMelicopeelleryanaNeolitseadealbataPilidiostigmatropicumPlanchonellamyrsinodendronPolysciaselegansScolopiabrauniiSyzygiumcormiforumSyzygiumsayeriTerminaliasericocarpaTrematomentosavar.viridisCommonnameCandlenutRedashMilkypineRedtulipoakBrowntulipoakNorthernsilkyoakBrowntamarindSnotty-gobbleNorthernlaurelBrownlaurelBrownquandongBluequandongPinkpoplarWaterfgRusty-leavedfgHairyfgAthertonFigSepticfgSuperbfgWhitefgSilverashButtonwoodGlossytamarindSilkytamarindNortonssilkyoakBleedingheartBandicootberryBrownbollywoodKamalaRedkamalaWhitecedarCorkwoodWhitebollywoodApricotmyrtleYellowboxwoodCelerywoodFlintwoodBumpysatinashPinksatinashDamsonplumPoisonpeachFamilyEuphorbiaceaeRhamnaceaeApocynaceaeSterculiaceaeSterculiaceaeProteaceaeSapindaceaeBoraginaceaeLauraceaeLauraceaeElaeocarpaceaeElaeocarpaceaeAnacardiaceaeMoraceaeMoraceaeMoraceaeMoraceaeMoraceaeMoraceaeMoraceaeRutaceaePhyllanthaceaeSapindaceaeSapindaceaeProteaceaeEuphorbiaceaeVitaceaeLauraceaeEuphorbiaceaeEuphorbiaceaeMeliaceaeRutaceaeLauraceaeMyrtaceaeSapotaceaeAraliaceaeFlacourtiaceaeMyrtaceaeMyrtaceaeCombretaceaeUlmaceaeAllyearJan-AprDec-FebAug-JanDec-FebOct-FebNov-FebOct-FebAug-FebNov-MarDec-FebMar-DecNov-FebAllyearNov-AprAllyearOct-MarFeb-JunAllyearOct-JunDec-MarDec-AprNov-JanNov-MarMay-DecSep-AprDec-MayJun-NovDec-MayNov-AprNov-MarApr-AugJan-JunDec-MarMay-NovJun-NovDec-MarAug-FebNov-MarDec-FebNov-MayIndicativeruitingtimesedgesealingspecies RepairingtheRainforest121edgesealingspeciesMAXIMUMDIVERSITYScientifcnameAcronychiaacidulaAcmenaresaAglaiasapindinaAlloxylonfammeumAlphitoniapetrieiAphananthephilippinensisAryteradivaricataAthertoniadiversioliaBrachychitonacerioliusCryptocaryamackinnonianaCryptocaryamurrayiDarlingiadarlingianaDavidsoniapruriensDecaspermumhumileDiploglottisdiphyllostegiaDysoxylummollissimumssp.molleDysoxylumparasiticumElaeocarpusruminatusEndiandrapalmerstoniiFicusobliquaFicuspleurocarpaFicuswatkinsianaFirmianapapuanaFlindersiabourjotianaFlindersiabrayleyanaGmelinaasciculiforaHarpulliapendulaHodgkinsoniarutescensJagerapseudorhusvar.integerrimaMelicoperubraMischaryteralautererianaMyristicaglobosassp.muelleriPararchidendronpruinosumPhaleriaclerodendronPrunusturnerianaRhysotoechiarobertsoniiSauropusmacranthusStenocarpussinuatusSyzygiumcryptophlebiumSyzygiumjohnsoniiSyzygiumkurandaSyzygiumluehmanniiSyzygiumpapyraceumTernstroemiacherryiToonaciliataXanthostemonwhiteiCommonnameLemonaspenRedEungellasatinashBoodyarraSatinoakPinkashNativehollyRosetamarindAthertonoakFlametreeRustylaurelMurrayslaurelBrownsilkyoakDavidsonsplumBrownmyrtleNortherntamarindMivamahoganySpurmahoganyBrownquandongQueenslandwalnutFigwoodBananafgWatkinsfgLacewoodQueenslandsilverashQueenslandmapleNorthernWhitebeechTulipwoodTurkeybushPinktamarindLittleevodiaCorduroytamarindNutmegTulipsirisScenteddaphneAlmondbarkRobertstuckerooAthertonsauropusWheelofrePlumsatinashRosesatinashKurandasatinashCherrysatinashPaperbarksatinashCherrybeechRedcedarRedpendaFamilyRutaceaeMyrtaceaeMeliaceaeProteaceaeRhamnaceaeUlmaceaeSapindaceaeProteaceaeSterculiaceaeLauraceaeLauraceaeProteaceaeDavidsoniaceaeMyrtaceaeSapindaceaeMeliaceaeMeliaceaeElaeocarpaceaeLauraceaeMoraceaeMoraceaeMoraceaeSterculiaceaeRutaceaeRutaceaeVerbenaceaeSapindaceaeRubiaceaeSapindaceaeRutaceaeSapindaceaeMyristicaceaeMimosaceaeThymelaeaceaeRosaceaeSapindaceaeEuphorbiaceaeProteaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeTheaceaeMeliaceaeMyrtaceaeApr-AugOct-AprNov-AprSepJanFeb-AugDec-AprSep-DecOct-FebApr-DecMay-JanOct-DecNov-JanAllyearJul-NovAug-DecOct-FebNov-FebMar-SepDec-MayAllyearAug-DecJan-OctMar-JunNov-AprJun-JanDec-MarMar-DecSep-MarJul-NovFeb-MayOct-DecAug-DecNov-JunJan-JunJul-JanOct-FebMar-NovDec-JanSep-JanSep-MarAug-NovNov-AprDec-FebAllyearOct-JanSep-JanIndicativeruitingtimes 122RepairingtheRainforestGROUP8WETUPLANDSONALLUVIUMCOLLUVIUMMETAMORPHICSANDGRANITESFRAMEWORKSPECIESScientifcnameAcaciacelsaAleuritesrockinghamensisAlphitoniapetrieiAlphitoniawhiteiCastanosporaalphandiiCryptocaryatriplinervisElaeocarpusgrandisEuroschinusalcatavar.alcataFicuscongestavar.congestaFicusdestruensFicussepticaFicusvirensFicuswatkinsianaFlindersiabourjotianaFlindersiabrayleyanaGlochidionharveyanumGrevilleabaileyanaGuioalasioneuraHelicianortonianaHomalanthusnovoguineensisLitsealeeeanaMischocarpuslachnocarpusNeolitseadealbataPilidiostigmatropicumPolysciaselegansPolysciasmurrayiPouteriabrownlessianaPulleastutzeriRhodamniasessiliforaSyzygiumcormiforumTerminaliasericocarpaTrematomentosavar.viridisCommonnameBrownsalwoodCandlenutPinkashRedashBrowntamarindBrownlaurelBluequandongPinkpoplarWaterfgRusty-leavedfgSepticfgWhitefgWatkinsfgQueenslandsilverashQueenslandmapleButtonwoodFindlayssilkyoakSilkytamarindNortonssilkyoakBleedingheartBrownbollywoodWoollypearruitWhitebollywoodApricotmyrtleCelerywoodWhitebasswoodBoxwoodHardalderIronmalletwoodBumpysatinashDamsonplumPoisonpeachFamilyMimosaceaeEuphorbiaceaeRhamnaceaeRhamnaceaeSapindaceaeLauraceaeElaeocarpaceaeAnacardiaceaeMoraceaeMoraceaeMoraceaeMoraceaeMoraceaeRutaceaeRutaceaePhyllanthaceaeProteaceaeSapindaceaeProteaceaeEuphorbiaceaeLauraceaeSapindaceaeLauraceaeMyrtaceaeAraliaceaeAraliaceaeSapotaceaeCunoniaceaeMyrtaceaeMyrtaceaeCombretaceaeUlmaceaeOct-FebAllyearFeb-AugJan-AprNov-FebNov-MarMar-DecNov-FebAllyearNov-AprFeb-JunOct-JunJan-OctNov-AprJun-JanDec-AprOct-FebNov-MarMay-DecSep-AprJun-NovDec-JulJan-JunDec-MarJun-NovJun-OctOct-FebDec-MayDec-MayAug-FebDec-FebNov-MayIndicativeruitingtimesedgesealingspecies RepairingtheRainforest123MAXIMUMDIVERSITYScientifcnameAcronychiaacidulaAcronychiavestitaAgathisatropurpureaAgathismicrostachyaAgathisrobustaAlloxylonwickhamiiAntidesmaerostreArchidendrongrandiforumArchirhodomyrtusbeckleriAryteradivaricataAthertoniadiversioliaBeilschmiediabancrotiiBrachychitonacerioliusBuckinghamiacelsissimaCanariumaustralasicumCardwelliasublimisCerberainfataCryptocaryaangulataCryptocaryacorrugataCryptocaryamackinnonianaDarlingiadarlingianaDavidsoniapruriensDecaspermumhumileDiospyrospentameraDysoxylumparasiticumElaeocarpusoveolatusElaeocarpuslargiforensssp.largiforensElaeocarpusruminatusEndiandrahypotephraEndiandrapalmerstoniiEndiandrasankeyanaEndiandrawoleiEupomatialaurinaFicuscopiosaFicushispidaFicuspleurocarpaFlindersiabourjotianaFlindersiabrayleyanaFlindersiapimentelianaFranciscodendronlaurioliumGalbulimimabaccataGillbeeaadenopetalaGossiadallachianaGrevilleahillianaHicksbeachiapilosaHomaliumcircumpinnatumLitseabindonianaLitseaconnorsiiMischaryteralautererianaMischocarpuslachnocarpusMyristicaglobosassp.muelleriOpisthiolepisheterophyllaPhaleriaclerodendronPittosporumrubiginosumPlacospermumcoriaceumPodocarpusgrayaePrunusturnerianaScolopiabrauniiCommonnameLemonaspenWhiteaspenBlackkauriBullkauriQueenslandkauriSatinoakCurrantwoodTulipsirisRosemyrtleRosetamarindAthertonoakYellowwalnutFlametreeSpottedsilkyoakMangobarkNorthernsilkyoakGreymilkwoodIvorylaurelCorduroylaurelRustylaurelBrownsilkyoakDavidsonsplumBrownmyrtleGreypersimmonSpurmahoganyNorthernquandongTropicalquandongBrownquandongRosewalnutQueenslandwalnutSankeyswalnutWalnutCopperlaurelPlentiulfgHairyfgBananafgQueenslandsilverashQueenslandmapleMaplesilkwoodTulipsterculiaMagnoliaPinkalderLignumHillssilkyoakRedbauplenutBrownboxwoodBigleabollywoodBollywoodCorduroytamarindWoollypearruitNutmegBlushsilkyoakScenteddaphneRedpittosporumRosesilkyoakBrownpineAlmondbarkFlintwoodFamilyRutaceaeRutaceaeAraucariaceaeMyrtaceaeAraucariaceaeProteaceaePhyllanthaceaeMimosaceaeMyrtaceaeSapindaceaeProteaceaeLauraceaeSterculiaceaeProteaceaeBurseraceaeProteaceaeApocynaceaeLauraceaeLauraceaeLauraceaeProteaceaeDavidsoniaceaeMyrtaceaeEbenaceaeMeliaceaeElaeocarpaceaeElaeocarpaceaeElaeocarpaceaeLauraceaeLauraceaeLauraceaeLauraceaeEupomatiaceaeMoraceaeMoraceaeMoraceaeRutaceaeRutaceaeRutaceaeSterculiaceaeHimantandraceaeCunoniaceaeMyrtaceaeProteaceaeProteaceaeFlacourtiaceaeLauraceaeLauraceaeSapindaceaeSapindaceaeMyristicaceaeProteaceaeThymelaeaceaePittosporaceaeProteaceaePodocarpaceaeRosaceaeFlacourtiaceaeApr-AugJun-OctDec-JanDec-JanNov-FebAug-OctJan-NovAug-FebSep-FebSep-DecOct-FebOct-AugApr-DecMay-NovJun-JanOct-FebOct-JanJul-DecJun-JanMay-JanNov-JanAllyearJul-NovJan-JulNov-FebJul-JanNov-MarMar-SepSep-NovDec-MayMay-OctAug-DecApr-AugAug-NovAllyearAug-DecNov-AprJun-JanSep-DecNov-MarFeb-SepAug-FebAllyearJan-MarAug-JanNov-FebOct-DecOct-DecOct-DecDec-JulAug-DecAug-NovJan-JunMar-SepMar-OctOct-JanJul-JanDec-MarIndicativeruitingtimes 124RepairingtheRainforestScientifcnameCommonnameFamilyIndicativeruitingtimesSloanealangiiStenocarpusdavallioidesStenocarpussinuatusSundacarpusamarusSyzygiumcanicortexSyzygiumcryptophlebiumSyzygiumjohnsoniiSyzygiumkurandaSyzygiumluehmanniiSyzygiumtrachyphloiumTernstroemiacherryiWaterhouseaunipunctataXanthostemonwhiteiWhitecarabeenFern-leastenocarpusWheelofreBlackpineYellowsatinashPlumsatinashRosesatinashKurandasatinashCherrysatinashRoughbarkedsatinashCherrybeechRolypolysatinashRedpendaElaeocarpaceaeProteaceaeProteaceaePodocarpaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeTheaceaeMyrtaceaeMyrtaceaeSep-AprOct-FebDec-JanDec-MarApr-NovSep-JanSep-MarAug-NovNov-AprNov-MarAllyearJun-DecSep-Janedgesealingspecies RepairingtheRainforest125GROUP9WETTOVERYWETUPLANDSONBASALTFRAMEWORKSPECIESScientifcnameAcaciamelanoxylonAcmenaresaAcronychiaacidulaAleuritesrockinghamensisAlphitoniapetrieiAlphitoniawhiteiAlstoniascholarisArchirhodomyrtusbeckleriArgyrodendronperalatumArgyrodendrontrioliolatumCardwelliasublimisCryptocaryatriplinervisCryptocaryahypospodiaDysoxylummollissimumssp.molleElaeocarpusgrandisEuroschinusalcatavar.alcataFicuscongestavar.congestaFicuscopiosaFicusdestruensFicushispidaFicusobliquaFicuspleurocarpaFicussepticaFicusvariegataFlindersiabrayleyanaFlindersiapimentelianaFlindersiaschottianaGlochidionharveyanumGuioaacutioliaGuioalasioneuraHelicianortonianaLitsealeeeanaMacarangatanariusMeliaazedarachMelicopeelleryanaNeolitseadealbataHomalanthusnovoguineensisPlanchonellamyrsinodendronPolysciaselegansPrunusturnerianaPulleastutzeriRhodamniasessiliforaSloaneamacbrydeiSyzygiumcormiforumTrematomentosavar.viridisCommonnameBlackwattleRedEungellasatinashLemonaspenCandlenutPinkashRedashMilkypineRosemyrtleRedtulipoakBrowntulipoakNorthernsilkyoakBrownlaurelNorthernlaurelMivamahoganyBluequandongPinkpoplarWaterfgPlentiulfgRusty-leavedfgHairyfgFigwoodBananafgSepticfgGreenruitedfgQueenslandmapleMaplesilkwoodSilverashButtonwoodGlossytamarindSilkytamarindNortonssilkyoakBrownbollywoodMacarangaWhitecedarCorkwoodWhitebollywoodBleedingheartYellowboxwoodCelerywoodAlmondbarkHardalderIronmalletwoodGreycarabeenBumpysatinashPoisonpeachFamilyMimosaceaeMyrtaceaeRutaceaeEuphorbiaceaeRhamnaceaeRhamnaceaeApocynaceaeMyrtaceaeSterculiaceaeSterculiaceaeProteaceaeLauraceaeLauraceaeMeliaceaeElaeocarpaceaeAnacardiaceaeMoraceaeMoraceaeMoraceaeMoraceaeMoraceaeMoraceaeMoraceaeMoraceaeRutaceaeRutaceaeRutaceaePhyllanthaceaeSapindaceaeSapindaceaeProteaceaeLauraceaeEuphorbiaceaeMeliaceaeRutaceaeLauraceaeEuphorbiaceaeSapotaceaeAraliaceaeRosaceaeCunoniaceaeMyrtaceaeElaeocarpaceaeMyrtaceaeUlmaceaeSep-DecOct-AprApr-AugAllyearFeb-AugJan-AprDec-FebSep-FebAug-JanDec-FebOct-FebNov-MarAug-FebOct-FebMar-DecNov-FebAllyearJan-NovNov-AprAllyearAllyearAug-DecFeb-JunNov-JulJun-JanSep-DecDec-MarDec-AprNov-JanNov-MarMay-DecJun-NovSep-FebNov-MarApr-AugJan-JunSep-AprMay-NovJun-NovJul-JanDec-MayDec-MaySep-MarAug-FebNov-MayIndicativeruitingtimesedgesealingspecies 126RepairingtheRainforestedgesealingspeciesMAXIMUMDIVERSITYScientifcnameAlloxylonfammeumAryteradivaricataAryterapauciforaAthertoniadiversioliaBeilschmiediabancrotiiBrachychitonacerioliusBuckinghamiacelsissimaCanariumaustralasicumCarnarvoniaaraliioliaCerberainfataCinnamomumlaubatiiCryptocaryamurrayiCryptocaryaoblataCryptocaryamackinnonianaDarlingiaerrugineaDavidsoniapruriensDecaspermumhumileDiploglottisbracteataDysoxylumalliaceumDysoxylumparasiticumElaeocarpuseumundiElaeocarpusoveolatusElaeocarpuslargiforensssp.largiforensEndiandrapalmerstoniiEndiandrasankeyanaEndiandrawoleiEupomatialaurinaFicuscrassipesFicusvirensFicuswatkinsianaFlindersiaacuminataFlindersiabourjotianaGalbulimimabaccataGeissoisbiagianaGillbeeaadenopetalaGmelinaasciculiforaGossiadallachianaHelicialamingtonianaHicksbeachiapilosaHollandaeasayerianaHymenosporumfavumJagerapseudorhusvar.integerrimaLitseaconnorsiiMischaryteralautererianaMischocarpuslachnocarpusMyristicaglobosassp.muelleriOpisthiolepisheterophyllaPhaleriaclerodendronPitaviasterhaplophyllusScolopiabrauniiSloanealangiiStenocarpussinuatusSundacarpusamarusSyzygiumcryptophlebiumSyzygiumgustavioidesSyzygiumjohnsoniiSyzygiumkurandaSyzygiumpapyraceumWaterhouseaunipunctataXanthostemonwhiteiCommonnameSatinoakRosetamarindSmallleatamarindAthertonoakYellowwalnutFlametreeIvorycurltreeMangobarkCaledonianoakGreymilkwoodPepperwoodMurrayslaurelTarzalisilkwoodRustylaurelRosesilkyoakDavidsonsplumBrownmyrtleBoonjeetamarindBumahoganySpurmahoganyEumundiquandongNorthernquandongTropicalquandongQueenslandwalnutSankeyswalnutWalnutCopperlaurelFigwoodWhitefgFigwoodSilversilkwoodQueenslandsilverashMagnoliaBrushmahoganyPinkalderNorthernWhitebeechLignumLamingtonssilkyoakRedbauplenutMuellersoakNativerangipaniPinktamarindBollywoodCorduroytamarindWoollypearruitNutmegBlushsilkyoakScenteddaphneYellowaspenFlintwoodWhitecarabeenWheelofreBlackpinePlumsatinashWatergumRosesatinashKurandasatinashPaperbarksatinashRolypolysatinashRedpendaFamilyProteaceaeSapindaceaeSapindaceaeProteaceaeLauraceaeSterculiaceaeProteaceaeBurseraceaeProteaceaeApocynaceaeLauraceaeLauraceaeLauraceaeLauraceaeProteaceaeDavidsoniaceaeMyrtaceaeSapindaceaeMeliaceaeMeliaceaeElaeocarpaceaeElaeocarpaceaeElaeocarpaceaeLauraceaeLauraceaeLauraceaeEupomatiaceaeMoraceaeMoraceaeMoraceaeRutaceaeRutaceaeHimantandraceaeCunoniaceaeCunoniaceaeVerbenaceaeMyrtaceaeProteaceaeProteaceaeProteaceaePittosporaceaeSapindaceaeLauraceaeSapindaceaeSapindaceaeMyristicaceaeProteaceaeThymelaeaceaeRutaceaeFlacourtiaceaeElaeocarpaceaeProteaceaePodocarpaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeSep-JanSep-DecAug-JanOct-FebOct-AugApr-DecMay-NovJun-JanSep-MarOct-JanAug-NovOct-DecNov-AprNov-AprAug-JanAllyearJul-NovNov-JanApr-JunNov-FebSep-AprJul-JanNov-MarDec-MayMay-OctAug-DecApr-AugJul-MayOct-JunJan-OctAug-DecNov-AprFeb-SepJan-MarAug-FebDec-MarAllyearSep-NovAug-JanDec-MarDec-AprJul-NovOct-DecOct-DecDec-JulAug-DecAug-NovJan-JunFeb-AugDec-MarSep-AprDec-JanDec-MarSep-JanMay-SepSep-MarAug-NovDec-FebJun-DecSep-JanIndicativeruitingtimes RepairingtheRainforest127GROUP10WETTOVERYWETHIGHLANDSONBASALTFRAMEWORKSPECIESScientifcnameAcaciamelanoxylonAcmenaresaAleuritesrockinghamensisAlphitoniapetrieiAlphitoniawhiteiAlstoniascholarisArgyrodendronperalatumArgyrodendrontrioliolatumCardwelliasublimisCastanosporaalphandiiCryptocaryamackinnonianaCryptocaryatriplinervisElaeocarpusgrandisFicuscongestavar.congestaFicusobliquaFicuspleurocarpaFicussepticaFlindersiabrayleyanaFlindersiapimentelianaGuioaacutioliaGuioalasioneuraGuioamontanaHelicianortonianaHomalanthusnovoguineensisLitsealeeeanaMallotusmollissimusMallotusphilippensisMelicopeelleryanaNeolitseadealbataPilidiostigmatropicumPolysciaselegansPouteriabrownlessianaPrunusturnerianaRhodamniasessiliforaSloaneamacbrydeiSyzygiumcormiforumSyzygiumsayeriCommonnameBlackwattleRedEungellasatinashCandlenutPinkashRedashMilkypineRedtulipoakBrowntulipoakNorthernsilkyoakBrowntamarindRustylaurelBrownlaurelBluequandongWaterfgFigwoodBananafgSepticfgQueenslandmapleMaplesilkwoodGlossytamarindSilkytamarindTamarindNortonssilkyoakBleedingheartBrownbollywoodKamalaRedkamalaCorkwoodWhitebollywoodApricotmyrtleCelerywoodBoxwoodAlmondbarkIronmalletwoodGreycarabeenBumpysatinashPinksatinashFamilyMimosaceaeMyrtaceaeEuphorbiaceaeRhamnaceaeRhamnaceaeApocynaceaeSterculiaceaeSterculiaceaeProteaceaeSapindaceaeLauraceaeLauraceaeElaeocarpaceaeMoraceaeMoraceaeMoraceaeMoraceaeRutaceaeRutaceaeSapindaceaeSapindaceaeSapindaceaeProteaceaeEuphorbiaceaeLauraceaeEuphorbiaceaeEuphorbiaceaeRutaceaeLauraceaeMyrtaceaeAraliaceaeSapotaceaeRosaceaeMyrtaceaeElaeocarpaceaeMyrtaceaeMyrtaceaeSep-DecOct-AprApr-DecFeb-AugJan-AprDec-FebAug-JanDec-FebOct-FebNov-FebNov-AprNov-MarDec-AprAllyearSep-MarMar-DecFeb-JunJun-JanSep-DecNov-JanNov-MarNov-JanAllyearSep-AprJun-NovAllyearNov-AprApr-AugFeb-MayDec-MarJun-NovOct-FebNov-MarDec-MaySep-MarAug-FebNov-MarIndicativeruitingtimesedgesealingspecies 128RepairingtheRainforestMAXIMUMDIVERSITYScientifcnameAcronychiaacidulaAlloxylonfammeumAntidesmaerostreArchidendronvaillantiiArchirhodomyrtusbeckleriBeilschmiediabancrotiiBrachychitonacerioliusCarnarvoniaaraliioliaCerberainfataCryptocaryahypospodiaCryptocaryamurrayiCryptocaryaoblataCryptocaryaonoprienkoanaDarlingiadarlingianaDarlingiaerrugineaDysoxylumparasiticumElaeocarpuseumundiElaeocarpusoveolatusElaeocarpuslargiforensssp.largiforensEndiandrainsignisEndiandrapalmerstoniiEndiandrasankeyanaEupomatialaurinaFicuscopiosaFicuscrassipesFicusdestruensFicuswatkinsianaFlindersiabourjotianaFlindersiaschottianaGalbulimimabaccataGillbeeaadenopetalaGmelinaasciculiforaHymenosporumfavumLitseaconnorsiiMischaryteralautererianaMischocarpuslachnocarpusMyristicaglobosassp.muelleriOpisthiolepisheterophyllaPararchidendronpruinosumPulleastutzeriScolopiabrauniiSloanealangiiStenocarpussinuatusSundacarpusamarusSyzygiumcryptophlebiumSyzygiumgustavioidesSyzygiumjohnsoniiSyzygiumkurandaSyzygiumpapyraceumWaterhouseaunipunctataCommonnameLemonaspenSatinoakCurrantwoodSalmonbeanRosemyrtleYellowwalnutFlametreeCaledonianoakGreymilkwoodNorthernlaurelMurrayslaurelTarzalisilkwoodRosemapleBrownsilkyoakRosesilkyoakSpurmahoganyEumundiquandongNorthernquandongTropicalquandongHairywalnutQueenslandwalnutSankeyswalnutCopperlaurelPlentiulfgFigwoodRusty-leavedfgWatkinsfgQueenslandsilverashSilverashMagnoliaPinkalderNorthernWhitebeechNativerangipaniBollywoodCorduroytamarindWoollypearruitNutmegBlushsilkyoakTulipsirisHardalderFlintwoodWhitecarabeenWheelofreBlackpinePlumsatinashWatergumRosesatinashKurandasatinashPaperbarksatinashRolypolysatinashFamilyRutaceaeProteaceaePhyllanthaceaeMimosaceaeMyrtaceaeLauraceaeSterculiaceaeProteaceaeApocynaceaeLauraceaeLauraceaeLauraceaeLauraceaeProteaceaeProteaceaeMeliaceaeElaeocarpaceaeElaeocarpaceaeElaeocarpaceaeLauraceaeLauraceaeLauraceaeEupomatiaceaeMoraceaeMoraceaeMoraceaeMoraceaeRutaceaeRutaceaeHimantandraceaeCunoniaceaeVerbenaceaePittosporaceaeLauraceaeSapindaceaeSapindaceaeMyristicaceaeProteaceaeMimosaceaeCunoniaceaeFlacourtiaceaeElaeocarpaceaeProteaceaePodocarpaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeApr-AugSep-JanJan-NovJan-JunSep-FebOct-AugApr-DecSep-MarNov-MayAug-FebOct-DecNov-AprJun-NovNov-JanAug-JanNov-FebSep-AprAug-MarNov-MarOct-JulDec-MayMay-OctApr-AugJan-NovAllyearMar-DecSep-AprNov-AprDec-MarFeb-SepAug-FebDec-MarDec-AprOct-DecOct-DecDec-JulAug-DecAug-NovNov-JunDec-MayDec-MarJun-JanDec-JanDec-MarSep-JanMay-SepSep-MarAug-NovDec-FebJun-DecIndicativeruitingtimesedgesealingspecies RepairingtheRainforest129GROUP11MOISTTOVERYWETLOWLANDSONCOASTALDUNESFRAMEWORKSPECIESScientifcnameAcaciaorariaAcmenahemilamprassp.hemilampraCanariumaustralianumCaralliabrachiataChionanthusramiforaCordiadichotomaCryptocaryatriplinervisCupaniopsisanacardioidesDilleniaalataFicushispidaFicusmicrocarpaFicusvirensvar.virensFlindersiaschottianaGlochidionharveyanumGlochidionphilippicumGrevilleabaileyanaHibiscustiliaceusHomalanthusnovoguineensisMacarangatanariusMelicopeelleryanaMillettiapinnataPittosporumvenulosumPleiogyniumtimorensePolysciaselegansRhustaitensisScolopiabrauniiSyzygiumangophoroidesTerminaliasericocarpaCommonnameWattleBlushsatinashScrubturpentineCorkybarkNativeoliveSnotty-gobbleBrownlaurelGreenleavedtamarindRedbeechHairyfgSmallruitedfgWhitefgTropicalashButtonwoodDaintreecheesetreeFindlayssilkyoakCoastcottonwoodBleedingheartMacarangaCorkwoodPongamiaBrownpittosporumBurdekinplumCelerywoodSumacFlintwoodLostdogDamsonplumFamilyMimosaceaeMyrtaceaeBurseraceaeRhizophoraceaeOleaceaeBoraginaceaeLauraceaeSapindaceaeDilleniaceaeMoraceaeMoraceaeMoraceaeRutaceaePhyllanthaceaePhyllanthaceaeProteaceaeMalvaceaeEuphorbiaceaeEuphorbiaceaeRutaceaeFabaceaePittosporaceaeAnacardiaceaeAraliaceaeAnacardiaceaeFlacourtiaceaeMyrtaceaeCombretaceaeSep-OctMar-JulJun-OctSep-NovSep-DecOct-FebNov-MarMay-AugSep-FebAllyearJan-JunAug-AprDec-MarDec-AprJun-MarOct-FebNov-FebSep-AprSep-MarApr-AugSep-AprJul-AprMar-OctJun-NovFeb-NovDec-MarNov-AprDec-FebIndicativeruitingtimesedgesealingspecies 130RepairingtheRainforestedgesealingspeciesMAXIMUMDIVERSITYScientifcnameAcaciacelsaAdenantherapavoninaAlstoniascholarisAntidesmaerostreArchidendrongrandiforumArchidendronvaillantiiAryteradivaricataAtractocarpustzalaniissp.tzalaniiBarringtoniacalyptrataBombaxceibaBuchananiaarborescensCalophyllumsilCanariumvitienseDarlingiadarlingianaDeplancheatetraphyllaElaeocarpusbancrotiiFicusoppositaFlindersiabourjotianaGmelinadalrympleanaMorindacitrioliavar.citrioliaMyristicaglobosassp.muelleriParaserianthestoonaSterculiaquadridaSyzygiumcormiforumSyzygiumbrosumSyzygiumortessp.orteSyzygiumsharoniaeSyzygiumsuborbiculareTerminaliacatappaTernstroemiacherryiCommonnameBrownsalwoodBeadtreeMilkypineCurrantwoodTulipsirisSalmonbeanRosetamarindBrowngardeniaMangopineKapoktreeBuchananiaBlushtourigaCanariumBrownsilkyoakBignoniaKurandaquandongSandpaperfgQueenslandsilverashWhitebeechGreatmorindaNutmegAcaciacedarPeanuttreeBumpysatinashFibroussatinashWhiteappleSharonssatinashForestsatinashIndianalmondCherrybeechFamilyMimosaceaeMimosaceaeApocynaceaePhyllanthaceaeMimosaceaeMimosaceaeSapindaceaeRubiaceaeLecythidaceaeBombacaceaeAnacardiaceaeClusiaceaeBurseraceaeProteaceaeBignoniaceaeElaeocarpaceaeMoraceaeRutaceaeVerbenaceaeRubiaceaeMyristicaceaeMimosaceaeSterculiaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeCombretaceaeTheaceaeOct-FebJun-FebDec-FebJan-NovAug-FebJan-JunSep-DecMay-OctDec-AugAug-OctSep-FebAug-NovJun-SepNov-JanNov-DecFeb-AprOct-AprNov-AprJan-AprMar-DecAug-DecAug-SepMay-JanAug-FebSep-FebSep-DecJul-AugAllyearOct-FebAllyearIndicativeruitingtimes RepairingtheRainforest131GROUP12MOISTTOVERYWETUPLANDSANDHIGHLANDSONALLUVIUMGRANITESANDMETAMORPHICSFRAMEWORKSPECIESScientifcnameAleuritesrockinghamensisAlphitoniapetrieiAlphitoniawhiteiArchirhodomyrtusbeckleriBreyniacernuaCardwelliasublimisCastanosporaalphandiiClaoxylontenerioliumCryptocaryahypospodiaDarlingiadarlingianaElaeocarpusgrandisFicusobliquaFicuspleurocarpaFicuswatkinsianaFlindersiabourjotianaFlindersiabrayleyanaGuioalasioneuraHelicianortonianaLitsealeeeanaMallotusmollissimusMallotusphilippensisMelicopeelleryanaMischocarpuslachnocarpusNeolitseadealbataPilidiostigmatropicumPittosporumrubiginosumPolysciasaustralianaPolysciaselegansPouteriabrownlessianaPulleastutzeriSyzygiumcormiforumCommonnameCandlenutPinkashRedashRosemyrtleCoeebushNorthernsilkyoakBrowntamarindQldbrittlewooodNorthernlaurelBrownsilkyoakBluequandongFigwoodBananafgWatkinsfgQueenslandsilverashQueenslandmapleSilkytamarindNortonssilkyoakBrownbollywoodKamalaRedkamalaCorkwoodWoollypearruitWhitebollywoodApricotmyrtleRedpittosporumIvorybasswoodCelerywoodBoxwoodHardalderBumpysatinashFamilyEuphorbiaceaeRhamnaceaeRhamnaceaeMyrtaceaePhyllanthaceaeProteaceaeSapindaceaeEuphorbiaceaeLauraceaeProteaceaeElaeocarpaceaeMoraceaeMoraceaeMoraceaeRutaceaeRutaceaeSapindaceaeProteaceaeLauraceaeEuphorbiaceaeEuphorbiaceaeRutaceaeSapindaceaeLauraceaeMyrtaceaePittosporaceaeAraliaceaeAraliaceaeSapotaceaeCunoniaceaeMyrtaceaeApr-DecFeb-AugJan-AprSep-FebAllyearOct-FebNov-FebAug-JanAug-FebNov-JanDec-AprSepMarMar-SepSep-AprNov-AprJun-JanNov-MarAllyearJun-NovAllyearNov-AprApr-AugDec-JulFeb-MayDec-MarApr-OctDec-MarJun-NovOct-FebDec-MayAug-FebIndicativeruitingtimes 132RepairingtheRainforestMAXIMUMDIVERSITYScientifcnameAcronychiaacidulaAlloxylonwickhamiiAntidesmaerostreArchidendronvaillantiiBrachychitonacerioliusBuckinghamiacelsissimaCanariumaustralasicumCastanospermumaustraleCryptocaryamackinnonianaCryptocaryamurrayiElaeocarpusoveolatusElaeocarpuslargiforensssp.largiforensEndiandrahypotephraEndiandrainsignisEndiandrapalmerstoniiEndiandrasankeyanaEupomatialaurinaFlindersiabourjotianaFlindersiabrayleyanaFlindersiapimentelianaFranciscodendronlaurioliumGalbulimimabaccataGeissoisbiagianaGillbeeaadenopetalaMacarangasubdentataMischaryteralautererianaMischocarpuspyriormisssp.pyriormisMyristicaglobosassp.muelleriPararchidendronpruinosumPittosporumrubiginosumPrunusturnerianaPulleastutzeriScolopiabrauniiSloanealangiiStenocarpussinuatusSundacarpusamarusSyzygiumcanicortexSyzygiumcryptophlebiumSyzygiumjohnsoniiSyzygiumkurandaSyzygiumluehmanniiSyzygiumpapyraceumSyzygiumtrachyphloiumTernstroemiacherryiWaterhouseaunipunctataXanthostemonwhiteiCommonnameLemonaspenSatinoakCurrantwoodSalmonbeanFlametreeIvorycurltreeMangobarkBlackbeanRustylaurelMurrayslaurelNorthernquandongTropicalquandongRosewalnutHairywalnutQueenslandwalnutSankeyswalnutCopperlaurelQueenslandsilverashQueenslandmapleMaplesilkwoodTulipsterculiaMagnoliaBrushmahoganyPinkalderNeedlebarkCorduroytamarindTamarindNutmegTulipsirisRedpittosporumAlmondbarkHardalderFlintwoodWhitecarabeenWheelofreBlackpineYellowsatinashPlumsatinashRosesatinashKurandasatinashCherrysatinashPaperbarksatinashRoughbarkedsatinashCherrybeechRolypolysatinashRedpendaFamilyRutaceaeProteaceaePhyllanthaceaeMimosaceaeSterculiaceaeProteaceaeBurseraceaeFabaceaeLauraceaeLauraceaeElaeocarpaceaeElaeocarpaceaeLauraceaeLauraceaeLauraceaeLauraceaeEupomatiaceaeRutaceaeRutaceaeRutaceaeSterculiaceaeHimantandraceaeCunoniaceaeCunoniaceaeEuphorbiaceaeSapindaceaeSapindaceaeMyristicaceaeMimosaceaePittosporaceaeRosaceaeCunoniaceaeFlacourtiaceaeElaeocarpaceaeProteaceaePodocarpaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeMyrtaceaeTheaceaeMyrtaceaeMyrtaceaeApr-AugAug-OctJan-NovJan-JunApr-DecMay-NovNov-JanMar-NovNov-AprOct-DecAug-MarNov-MarSep-NovOct-JulDec-MayMay-OctApr-AugNov-AprJun-JanSep-DecNov-MarFeb-SepJan-MarAug-FebNov-JunOct-DecDec-JanAug-DecNov-JunApr-OctNov-MarDec-MayDec-MarJun-JanDec-JanDec-MarApr-NovSep-JanSep-MarAug-NovNov-AprDec-FebNov-MarAllyearJun-DecSep-JanIndicativeruitingtimes RepairingtheRainforest133REFERENCESAdamP.1992.AustralianRainforests.OxordMonographsonBiogeography.No.6ClarendonPressOxord.AertsR.HonnayO.2011.Forestrestorationbiodiversityandecosystemunctioning.BMCEcology1129.AideT.M.ZimmermanJ.K.PascarellaJ.B.RiveraL.Marcano-VegaH.2000.Forestregenerationinachronosequenceotropicalabandonedpasturesimplicationsorrestorationecology.RestorationEcology8328-338.AndrenH.1994.Eectsohabitatragmentationonbirdsandmammalsinlandscapeswithdierentproportionsosuitablehabitatareview.Oikos71355-366.ArmestoJ.J.RozziR.1989.SeedDispersalSyndromesintheRainForestoChiloeEvidenceortheimportanceoBioticDispersalinaTemperateRainForest.JournalBiogeography16219-226.ArnaizO.L.WilsonA.L.WattsR.J.StevensM.M.2011.Infuenceoriparianconditioninaquaticmacroinvertebratecommunitiesinanagriculturalcatchmentinsouth-easternAustralia.EcologicalResearch26123-131.AshJ.1988.Thelocationandstabilityorainorestboundariesinnorth-easternQueenslandAustralia.J.Biogeography15619630.BakerF.S.1950.PrinciplesofSilviculture.McGraw-HillNewYork414pp.BarlowJ.OveralWAraujoI.GardnerT.PeresC.2007.Thevalueoprimarysecondaryandplantationorestsorruit-eedingbutterfiesintheBrazilianAmazon.JournalofAppliedEcology4410011012.BarnoskyA.D.MatzkeN.TomiyaS.WoganG.O.U.SwartzB.QuentalT.B.MarshallC.McGuireJ.L.LindseyE.L.MaguireK.C.LindseyE.L.MaguireK.C.MerseyB.FerrerE.A.2011.HastheEarthssixthmassextinctionalreadyarrivedNature47151-57.BawaK.S.1990.Plantpollinatorinteractionsintropicalrainorests.AnnualReviewofEcologyandSystematics21399422.BlisleM.DesrochersA.2002.Gap-crossingdecisionsbyorestbirdsanempiricalbasisorparameterizingspatially-explicitindividual-basedmodels.LandscapeEcology17219-231.BellinghamP.J.2008.CycloneeectsonAustralianrainorestAnoverview.AustralEcology33580-584.BellinghamP.J.TannerE.V.J.HealeyJ.R.2005.HurricanedisturbanceacceleratesinvasionbythealientreePittosporumundulatuminJamaicanmontanerainorest.JournaloVegetationScience16675-684.Benitez-MalvidoJ.1999.Littercovervariabilityaectsseedlingperormanceandherbivory.Biotropica31596-606.BenyusJ.M.1997.BiomimicryInnovationInspiredbyNature.WilliamMorrowCo.NewYork.BierregardR.O.LovejoyT.E.KaposV.dosSantosA.A.HutchingsR.W.1992.Thebiologicaldynamicsotropicalrainorestragments.Bioscience42859-866.BjorkmanO.LudlowM.M.1972.CharacterizationothelightclimateonthefooroaQueenslandrainorest.CarnegieInstituteofWashingtonYearBook7185-94.BostockP.D.HollandA.E2010.CensusoftheQueenslandFlora.QldHerbariumDepartmentoEnvironmentandResourceManagementBrisbane.BoulterS.L.KitchingR.L.HowlettB.G.2006.FamilyvisitorsandtheweatherpatternsofoweringintropicalrainorestsonorthernAustralia.JournalofEcology9436982.BoulterS.l.KitchingR.L.GrossC.L.GoodallK.L.HowlettB.G.2008.FloralmorphologyphenologyandpollinationintheWetTropics.InStorkN.E.TurtonS.M.eds.LivinginaDynamicTropicalForestLandscape.BlackwellPublishingLtd.Oxord.BrodieJ.E.KroonF.J.SchaelkeB.WolanskiE.C.LewisS.E.DevlinM.J.BohnetI.C.BainbridgeZ.T.WaterhouseJ.DavisA.M.2012.TerrestrialpollutantrunototheGreatBarrierReeAnupdateoissuesprioritiesandmanagementresponses.MarinePollutionBulletin6581-100. 134RepairingtheRainforestBronsteinJ.L.1995.Theplantpollinatorlandscape.InHanssonL.FahrigL.MerriamG.eds.MosaicLandscapesandEcologicalProcesses.ChapmanHallLondon.BruceC.KroonF.SydesD.FordA.2008.CyclonedamagesustainedbyriparianrevegetationsitesintheTully-MurrayoodplainQueenslandAustralia.AustralEcology33516-524.BunnS.E.DaviesP.M.MosischT.D.1999.Ecosystemmeasuresoriverhealthandtheirresponsetoripariancancatchmentdegradation.FreshwaterBiology41333-345.BurcherC.L.McTammanyM.E.BenfeldE.F.HelmanG.S.2008.Fishassemblageresponsestoorestcover.EnvironmentalManagement41338-346.CardinaleB.J.PalmerM.A.CollinsS.L.2002.Speciesdiversityenhancesecosystemunctioningthroughinterspecifcacilitation.Nature415426-429.CastroS.FerreroV.LoureiroJ.EspadalerX.SilveiraP.NavarroL.2010.DispersalmechanismsothenarrowendemicPolygalavayredaedispersalsyndromesandspatio-temporalvariationsinantdispersalassemblages.PlantEcology207359-372.CatterallC.P.McKennaS.KanowskiJ.PiperS.D.2008.DocyclonesandorestragmentationhavesynergisticeectsAbeore-aterstudyorainorestvegetationstructureatmultiplesites.AustralEcology33471-484.CelentanoD.ZahawiR.A.FineganB.Ostertag.R.ColeR.J.HollK.D.2011.LitteralldynamicsunderdierenttropicalorestrestorationstrategiesinCostaRica.Biotropica43279-287.ChapinF.S.IIITornM.S.TatenoM.1996.Principlesoecosystemsustainability.AmericanNaturalist14810161037.Charles-DominiqueP.1993.SpeciationandcoevolutionAninterpretationorugivoryphenomena.Vegetatio1077584.ChazdonR.L.2003.Tropicalorestrecoverylegaciesohumanimpactandnaturaldisturbances.PerspectivesinPlantEcologyEvolutionandSystematics651-71.ChazdonR.L.2008.Chanceanddeterminismintropicalorestsuccession.InCarsonW.P.SchnitzerS.A.eds.TropicalForestCommunityEcology.BlackwellScientifcOxord.p.384-408.ChessonP.HuntleyN.1997.Therolesoharshanductuatingconditionsinthedynamicsoecologicalcommunities.AmericanNaturalist15051953.ChildsD.Z.MetcalC.J.ReesM.2010.Evolutionarybet-hedgingintherealworldempiricalevidenceandchallengesrevealedbyplants.ProceedingsotheRoyalSocietyoLondonBBiologicalSciences27730553064.CliordH.T.MottJ.J.1986.Regenerativeprocesses.InCliordH.T.SpechtR.L.eds.TropicalPlantCommunities.DepartmentoBotanyUniversityoQueenslandBrisbane.pp68-77.Coates-EstradaR.EstradaA.1986.FruitingandrugivoresatastranglerfginthetropicalrainorestoLosTuxtlasMexico.JournalofTropicalEcology2349357.ColeR.J.HollK.D.KeeneC.L.ZahawiR.A.2011.Directseedingolate-successionaltreestorestoretropicalmontaneorest.ForestEcologyandManagement2611590-1597.CooperW.CooperW.T.2004FruitsoftheAustralianTropicalRainforest.NokomisEditionsMelbourne.ConnellJ.H.GreenP.T.2000.Seedlingdynamicsoverthirty-twoyearsinatropicalrainoresttree.Ecology81568584.ConnellJ.H.SlatyerR.O.1977.Mechanismsosuccessioninnaturalcommunitiesandtheirroleincommunitystabilityandorganization.AmericanNaturalist1111119-1144.ConnellJ.H.1975.Somemechanismsproducingstructureinnaturalcommunitiesamodelandevidenceromfeldexperiments.InCodyM.DiamondJ.eds.EcologyandEvolutionofCommunities.HarvardUniversityPressMass.pp.460-490. RepairingtheRainforest135CorlettR.T.1998.FrugivoryandseeddispersalbyvertebratesintheorientalIndomalayanregion.BiologicalReview73413-448.CorlettR.T.2002.FrugivoryandseeddispersalindegradedtropicalEastAsianlandscapes.InLeveyD.J.SilvaW.R.GalettiM.eds.SeedDispersalandFrugivoryEcologyEvolutionandConservation.WallingordUKCABInternational.pp.451-465.CromeF.H.J.1975.TheoragingecologyoruitpigeonsintropicalNorthernQueensland.AustralianWildlifeResearch215585.CromeF.H.J.1990.Vertebratesandsuccessions.InWebbL.J.KikkawaJ.eds.AustralianTropicalRainforestsScienceValuesMeaning.CSIROPublications.Melbournepp.53-64.CromeF.H.J.IrvineA.K.1986.Twobobeachway.ThepollinationandbreedingsystemotheAustralianrainoresttreeSyzygiumcormiorum.Biotropica18115-125.CromeF.H.J.MooreL.A.1990.Cassowariesinnorth-easternQueenslandReportoasurveyandareviewandassessmentotheirstatusandconservationandmanagementneeds.AustralianWildlieResearch17369-385.DallingJ.W.HubbellS.P.2002.Seedsizegrowthrateandgapmicrositeconditionsasdeterminantsorecruitmentsuccessorpioneerspecies.JournalofEcology90557-568.DavisM.A.GrimeJ.P.ThompsonK.2000.Fluctuatingresourcesinplantcommunitiesageneraltheoryoinvasibility.JournalofEcology8852834.DavisM.A.WrageK.J.ReichP.B.1998.Competitionbetweentreeseedlingsandherbaceousvegetationsupportoatheoryoresourcesupplyanddemand.JournalofEcology86652-661.DebusscheM.IsenmannP.1994.Bird-dispersedseedrainandseedlingestablishmentinpatchyMediterraneanvegetation.Oikos69414-426.DennisA.J.MarshH.1997.Seasonalreproductioninmuskyrat-kangaroosHypsiprymnodonmoschatusaresponsetochangesinresourceavailability.WildlifeResearch2456178.DennisA.J.WestcottD.A.2006.Reducingcomplexitywhenstudyingseeddispersalatcommunityscalesaunctionalclassifcationovertebrateseeddispersersintropicalorests.Oecologia149620-634.DenslowJ.S.1987.Tropicalrainorestgapsandtreespeciesdiversity.AnnualReviewofEcologyandSystematics18431451.DevlinM.J.BrodieJ.2005.TerrestrialdischargeintotheGreatBarrierReeLagoonnutrientbehaviourincoastalwaters.MarinePollutionBulletin519-22.DewJ.L.BoubliJ.P.2005.FruitsandFrugivoresTheSearchforStrongInteractors.KluwerAcademicPublishersNewYork.DosskeyM.G.2001.Towardquantiyingwaterpollutionabatementinresponsetoinstallingbuersoncropland.EnvironmentalManagement28577-598.DoustS.J.2004.Seedandseedlingecologyintheearlystagesorainorestrestoration.PhDthesisSchooloIntegrativeBiologyUniversityoQueenslandBrisbane.DoustS.J.2010.SeedremovalandpredationasactorsaectingseedavailabilityotreespeciesindegradedhabitatsandrestorationplantingsinrainorestareasoQueenslandAustralia.RestorationEcology19617-626.DuY.MiX.LiuX.ChenL.MaK.2009.Seeddispersalphenologyanddispersalsyndromesinasubtropicalbroad-leavedorestoChina.ForestEcologyandManagement2581147-1152.EglerF.E.1954.VegetationscienceconceptsI.Initialoristiccomposition-aactorinoldfeldvegetationdevelopment.Vegetation4412-417.ElliottS.BlakesleyD.MaxwellJ.F.DoustS.SuwannaratanaS.2006.HowtoPlantaForestThePrinciplesandPracticeofRestoringTropicalForests1stedition.ChiangMaiUniversityThailand. 136RepairingtheRainforestElmouttieD.2009.Utilisationofseedresourcesbysmallmammalsatwo-wayinteraction.PhDthesisQueenslandUniversityoTechnologyBrisbane.ErskineP.D.CatterallC.P.LambD.KanowskiJ.2007.PatternsandprocessesooldfeldreorestationinAustralianrainorestlandscapes.InCramerV.A.andHobbsR.J.eds.OldFieldsDynamicsandRestorationofAbandonedFarmland.IslandPress.Washington.p.119-144.FischerK.E.ChapmanC.A.1993.Frugivoresandruitsyndromesdierencesinpatternsatthegenusandspecieslevel.Oikos66472-482.FloydA.G.1987.StatusorainorestsinnorthernNewSouthWales.InWerrenG.L.KershawA.P.eds.TheRainforestLegacyVol.1.AustralianGovernmentPublishingServiceCanberrapp.95118.FolkeC.2006.Resiliencetheemergenceoaperspectiveorsocial-ecologicalsystemsanalyses.GlobalEnvironmentalChange16253267.FolkeC.CarpenterS.WalkerB.ScheerM.ElmqvistT.GundersonL.HollingC.S.2004.Regimeshitsresilienceandbiodiversityinecosystemmanagement.AnnualReviewofEcologyEvolutionandSystematics35557581.FosterS.A.JansonC.H.1985.Therelationshipbetweenseedsizeandestablishmentconditionsintropicalwoodyplants.Ecology66773-780.FoxJ.W.2010.Partitioningtheeectsospecieslossoncommunityvariabilityusingmulti-levelselectiontheory.Oikos11918231833.FrankieG.W.BakerH.G.OplerP.A.1974.ComparativephenologicalstudiesotreesintropicalwetanddryorestsinthelowlandsoCostaRica.JournalofEcology62881-919.FriedmanW.E.2009.ThemeaningoDarwinsabominablemystery.AmericanJournaloBotany965-21.FutuymaD.J.2010.Evolutionaryconstraintandecologicalconsequences.Evolution6418651884.GanadeG.BrownV.2002.SuccessioninoldpasturesoCentralAmazoniaroleosoilertilityandplantlitter.Ecology83743-754.GibbonsP.LindenmayerD.2002.TreeHollowsandWildlifeConservation.CSIROPublishingMelbourne.Gomez-RoldanV.FermasS.BrewerP.B.Puech-PagsV.DunE.A.PillotJ-P.LetisseF.MatusovaR.DanounS.PortaisJ-C.BouwmeesterH.BcardG.BeveridgeC.A.RameauC.RochangeS.F.2008.Strigolactoneinhibitionoshootbranching.Nature455189194.GoosemM.2000.Eectsotropicalrainorestroadsonsmallmammalsedgechangesincommunitycomposition.WildlifeResearch27151-163.GoosemM.2002.Eectsotropicalrainorestroadsonsmallmammalsragmentationedgeeectsandtrafcdisturbance.WildlifeResearch29277-289.GoosemS.P.2003.LandscapeprocessesrelevanttoweedinvasioninAustralianrainorestsandassociatedecosystems.InGriceA.C.SetterM.J.eds.WeedsofRainforestsandAssociatedEcosystems.CooperativeResearchCentreorTropicalRainorestEcologyandManagementRainorestCRCCairns.GoosemS.2008.InvasiveweedsintheWetTropics.InStorkN.EandTurtonS.M.eds.LivinginaDynamicTropicalForestLandscape.BlackwellPublishingLtd.Oxord.Pp.307-321.GoosemS.P.TuckerN.I.J.1995.RepairingtheRainorestTheoryandPracticeofRainforestRe-establishmentinnorthQueenslandsWetTropics.WetTropicsManagementAuthority.Cairns.GrifthsJ.F.1972.ClimatesoArica.InWorldSurveyofClimatologyVol.10.AmsterdamElsevier.GrimeJ.P.1979.PlantStrategiesandVegetationProcesses.NewYorkJohnWileyandSons.222pp.GrubbP.J.1998Seedsandruitsotropicalrainorestplantsinterpretationotherangeinseedsizedegreeodeenceandeshseedquotients.InNewberyD.M.PrinsH.H.T.BrownN.D.eds.DynamicsofTropicalCommunities.BlackwellScientifcOxordpp.1-24. RepairingtheRainforest137GuevaraS.LabordeJ.1993.Monitoringseeddispersalatisolatedstandingtreesintropicalpasturesconsequencesorlocalspeciesavailability.Vegetatio107108319-338.GuevaraS.MeaveJ.Moreno-CasasolaP.LabordeJ.1992.Floristiccompositionandstructureovegetationunderisolatedtreesinneotropicalpastures.JournaloVegetationScience3655-664.GustasonE.J.1998.QuantiyinglandscapespatialpatternwhatisstateotheartEcosystems1143-156.HarperJ.L.LovellP.H.MooreK.G.1970.Theshapesandsizesoseeds.AnnualReviewoEcologyandSystematics.1327-356.HarperJ.L.1977.PopulationBiologyoPlants.AcademicPressLondon.HartshornG.S.1980.Neotropicalorestdynamics.BiotropicaSupplement122330.HarveyC.E.TuckerN.I.JEstradaA.2004.Theroleoisolatedtreesliveencesandwindbreaksintheconservationotropicalbiodiversity.InScrothG.GasconC.IzacI.M.N.HarveyC.eds.Tropicalbiodiversityandtheroleoagroorestry.IslandPress.WashingtonD.C.Heartstill-ScalleyT.AideT.M.2003.Riparianvegetationandstreamconditioninatropicalagriculture-secondaryorestmosaic.EcologicalApplications13225-234.HenriquezJ.M.LuskC.H.2005.FacilitationoNothoagusantarcticaFagaceaeseedlingsbytheprostrateshrubEmpetrumrubrumEmpetraceaeonglacialmorainesinPatagonia.AustralEcology30877882HerreraC.M.1985.Determinantsoplantanimalcoevolutionthecaseomutualisticdispersaloseedsbyvertebrates.Oikos4413241.HerreraC.M.2002.Seeddispersalbyvertebrates.InHerreraC.M.PellmyrO.eds..Plantanimalinteractions.Anevolutionaryapproach.BlackwellOxordpp.185208.HillJ.L.HillR.A.2001.WhyaretropicalrainorestssospeciesrichClassiyingreviewingandevaluatingtheories.ProgressinPhysicalGeography25326-354.HollK.D.1998.DobirdperchingstructureselevateseedrainandseedlingestablishmentinabandonedtropicalpastureRestorationEcology6253-261.HollK.D.1999.Factorslimitingtropicalrainorestregenerationinabandonedpastureseedrainseedgerminationmicroclimateandsoil.Biotropica31229-242.HollK.D.LoikM.E.LinE.H.V.SamuelsI.A.2000.TropicalmontaneorestrestorationinCostaRicaovercomingbarrierstodispersalandestablishment.RestorationEcology8339-349.HollanderJ.L.VanderWallS.B.2009.DispersalsyndromesinNorthAmericanEphedra.InternationalJournaloPlantScience170323-330.HollingC.S.1973.Resilienceandstabilityoecologicalsystems.AnnualReviewoEcologyandSystematics41-23.HooperE.LegendreP.ConditR.2005.BarrierstoorestregenerationodeorestedandabandonedlandinPanama.JournaloAppliedEcology421165-1174.HopkinsM.S.1975.SpeciesDiversityandPatternintheSubtropicalRainorest.Ph.D.ThesisUniversityoQueenslandBrisbane.HopkinsM.S.1981.Disturbanceandchangeinrainorestsandtheresultingproblemsounctionalclassifcation.InGillisonA.N.AndersonD.J.edsVegetationClassicationinAustralia.AustralianNationalUniversityPressCanberrapp.42-52.HopkinsM.S.KikkawaJ.GrahamA.W.TraceyJ.G.WebbL.J.1976.Anecologicalbasisorthemanagementorainorest.InMonroeR.StevensN.C.eds.TheBorderRanges.ALandUseConfictinRegionalPerspective.RoyalSocietyoQueenslandBrisbanepp.57-66.HouseS.M.1989.PollenmovementtooweringcanopiesopistillateindividualsothreerainoresttreespeciesintropicalAustralia.AustralianJournaloEcology147794. 138RepairingtheRainforestHouseS.M.1993.Pollinationsuccessinapopulationodioeciousrainoresttrees.Oecologia9655561.HoweH.F.1977.Birdactivityandseeddispersaloatropicalwetoresttree.Ecology58539-50.HoweH.F.1984.Implicationsoseeddispersalbyanimalsortropicalreservemanagement.Biological.Conservation30261-81.HoweH.F.SmallwoodJ.1982.Ecologyoseeddispersal.AnnualReviewofEcologyandSystematics13201-228.HoweH.F.1989.Scatterandclump-dispersalandseedlingdemographyhypothesisandimplications.Oecologia79417426.HoweH.F.WestleyL.C.1986.Ecologyopollinationandseeddispersal.InCrawleyM.ed.PlantEcology.Blackwellpp.185-215.HubbellS.P.FosterR.B.OBrienS.T.HarmsK.E.ConditR.WechslerB.WrightS.J.LoodeLaoS.1999.Light-gapdisturbancesrecruitmentlimitationandtreediversityinaneotropicalorest.Science283554-57.HutchingsP.HaynesD.GoudkampK.McCookL.2005.CatchmenttoReeWaterqualityissuesintheGreatBarrierReeRegion-Anoverviewopapers.MarinePollutionBulletin513-8.IrvineA.K.ArmstrongJ.E.1990.BeetlepollinationintropicalorestsoAustralia.InBawaK.HadleyM.eds.ReproductiveEcologyofTropicalForestPlantsUNESCOParthenonParkRidgeNJpp.13549.IrvineA.K.andArmstrongJ.1988.BeetlepollinationinAustraliantropicalrainorests.ProceedingsoftheEcologicalSocietyofAustralia15107-113.JansenA.2005.AvianuseorestorationplantingsalongacreeklinkingrainorestpatchesontheAthertonTablelandsNorthQueensland.RestorationEcology13275-283.JanzenD.H.1967.SynchronizationosexualreproductionotreeswithinthedryseasoninCentralAmerica.Evolution21620-637.JanzenD.H.1975.EcologyofPlantsintheTropics.EdwardArnoldLondon.JennyH.1941.FactorsofSoilFormation.ASystemofQuantitativePedology.McGrawHillNewYork.JennyH.1958.Roleotheplantactorinthepedogenicunctions.Ecology395-16.JonesR.E.CromeF.H.J.1990.Thebiologicalweb-plantanimalinteractionsintherainorest.InWebbL.J.KikkawaJ.edsAustralianTropicalRainforestScience-ValuesMeaning.CSIROPublishingMelbourne.pp.74-87.JordanoP.1992.Fruitsandrugivory.InFennerM.ed.SeedsTheEcologyofRegenerationinPlantCommunities.CABIWallingordUKpp.10556.JordanoP.2000.Fruitsandrugivory.InFennerM.ed..Seeds.Theecologyofregenerationinplantcommunities.CABIWallingordpp.125165.KanowskiJ.CatterallC.P.McKennaS.G.JensenR.2008.ImpactsoCycloneLarryonthevegetationstructureotimberplantationsrestorationplantingsandrainorestontheAthertonTablelandAustralia.AustralEcology33485-494.KidsonR.WestobyM.2000.Seedmassandseedlingdimensionsinrelationtoseedlingestablishment.Oecologia12511-17.KitamuraS.YumotoT.PoonswadP.ChuailuaP.PlongmaiK.MaruhashiT.NomaN.2002.InteractionsbetweenfeshyruitsandrugivoresinatropicalseasonalorestinThailand.Oecologia133559-572.KnowltonN.1992.Thresholdsandmultiplestablestatesincoralreecommunitydynamics.AmericanZoologist32674682.LambertF.1989.Fig-eatingbybirdsinaMalaysianlowlandrain-orest.JournalofTropicalEcology5401412. RepairingtheRainforest139LauranceS.G.LauranceW.F.1999.Tropicalwildliecorridorsuseolinearrainorestremnantsbyarborealmammals.BiologicalConservation91231-239.LauranceW.F.1997.ResponsesomammalstorainorestragmentationintropicalQueenslandareviewandsynthesis.WildlieResearch24603-612.LauranceW.F.1999.Reectionsonthetropicaldeorestationcrisis.BiologicalConservation91109-117.LauranceW.F.2002.Hyperdynamisminragmentedhabitats.JournaloVegetationScience13595-602.LauranceW.F.2011.Originalandthebestnothingbeatsprimaryorestsorbiodiversity.TheConversation15September2011.httptheconversation.edu.auoriginal-and-the-best-nothing-beats-primary-orests-or-biodiversity-3388LauranceW.F.GoosemM.LauranceS.G.W.2009.Impactsoroadsandlinearclearingsontropicalorests.TrendinEcologyandEvolution24659-669.LawsonT.GilliesonD.GoosemM.2008a.AssessmentoriparianrainorestvegetationchangeinTropicalNorthQueenslandormanagementandrestorationpurposes.GeographicalResearch45387-397.LawsonT.GoosemM.GilliesonD.2008b.Rapidassessmentohabitatqualityinriparianrainorestvegetation.PacifcConservationBiology1420-33.LeesA.C.PeresC.A.2008.ConservationvalueoremnantriparianorestcorridorsovaryingqualityorAmazonianbirdsandmammals.ConservationBiology22439-449.LetcherS.G.2009.Phylogeneticstructureoangiospermcommunitiesduringtropicalorestsuccession.ProceedingsoRoyalSocietyB27797-104.LeveyD.J.1987.Seedsizeandruit-handlingtechniquesoavianrugivores.AmericanNaturalist12947180.LomascoloS.B.SperanzaP.KimballR.T.2008.Correlatedevolutionofgsizeandcolorsupportsthedispersalsyndromeshypothesis.Oecologia158783-796.LorionC.M.KennedyB.P.2009.Relationshipsbetweendeorestationriparianorestbuersandbenthicmacroinvertebratesinneotropicalheadwaterstreams.FreshwaterBiology54165-180.LowranceR.ToddR.FailJ.HendricksonO.LeonardR.AsmussenL.1984.Riparianorestsasnutrientfltersinagriculturalwatersheds.Bioscience34374-377.MabiForestWorkingGroup2000.VanishingVegetationoFarNorthQueenslandMabi5bForest.MabiForestWorkingGroup.MacArthurR.H.WilsonE.O.1967.TheTheoryoIslandBiogeography.PrincetonUniv.PressPrinceton.203pp.MaeterlinckM.2008.TheIntelligenceoFlowers.Translationotheoriginal1907publicationbyMosleyP..StateUniversityoNewYorkPress.MaggsJ.HewettB.1993.OrganicCandnutrientsinsuracesoilsromsomeprimaryrainorestderivedgrasslandsandsecondaryrainorestsotheAthertonTablelandinNorthEastQueensland.AustralianJournaloSoilResearch31343-350.Martinez-GarzaC.HoweH.F.2003.Restoringtropicaldiversitybeatingthetimetaxonspeciesloss.JournaloAppliedEcology40365-79.McClanahanT.R.WoleR.W.1993.Acceleratingorestsuccessioninaragmentedlandscapetheroleobirdsandperches.ConservationBiology7279-288.McClanahanT.R.PoluninN.DoneT.J.2002.Ecologicalstatesandtheresilienceocoralrees.ConservationEcology618.MeinersS.J.PickettS.T.A.CadenassoM.L.2002.Exoticplantinvasionsover40yearsooldfeldsuccessionscommunitypatternsandassociations.Ecography25215-233. 140RepairingtheRainforestMetcaleD.J.FordA.J.2009.Are-evaluationoQueenslandsWetTropicsbasedonprimitiveplants.PacifcConservationBiology158086.MoilanenA.NieminenM.2002.Simpleconnectivitymeasuresinspatialecology.Ecology831131-1145.MooreL.A.2001.TheCassowariesoMissionBeachPopulationnumberdensitiesdistributiondemographyandimplicationsorconservation.ReportcommissionedbytheDepartmentoMainRoads.MoranC.CatterallC.P.KanowskiJ.2009.Reduceddispersalonativeplantspeciesasaconsequenceothereducedabundanceorugivorespeciesinragmentedrainorest.BiologicalConservation141541-552.MudappaD.RamanT.R.S.2010.RainorestRestorationAGuidetoPrinciplesandPractice.NatureConservationFoundationMysore.MurciaC.1995.Edgeeectsinragmentedorestsimplicationsorconservation.Tree105862.MurphyH.T.MetcaleD.J.BradordM.G.FordA.F.GalwayK.E.SydesT.A.WestcottD.J.2008.RecruitmentdynamicsoinvasivespeciesinrainoresthabitatsollowingCycloneLarry.AustralEcology33495-502.NadolnyC.1999.RecruitmentandsurvivaloArgyrodendronactinophyllumseedlingsinanAustralianrainorest.AustralianJournaloEcology24258-269.NaeemS.2006.Biodiversityandecosystemunctioninginrestoredecosystemsextractingprinciplesorasyntheticperspective.InFalkD.A.PalmerM.A.ZedlerJ.B.eds.FoundationsoRestorationEcology.SocietyorEcologicalRestorationInternationalIslandPress.WashingtonD.Cpp.210-237.NationalLandandWaterResourcesAudit2001.CSIROLandandWaterTechnicalReportNumber1501.NaturalResourceManagementMinisterialCouncil.2007.AustralianWeedsStrategyAnationalstrategyorweedmanagementinAustralia.Canberra.NeidelJ.D.ConsunjiH.LabozettaJ.CalleA.Mateo-VegaJeds.2012.MainstreamingNativeSpecies-BasedForestRestorationELTIConerenceProceedings.NewHavenCTYaleUniversityPanamaCitySmithsonianTropicalResearchInstitute.NeilanW.CatterallC.P.KanowskiJ.McKennaS.2006.Dorugivorousbirdsassistrainorestsuccessioninweeddominatedoldfeldregrowthosub-tropicalAustralia.BiologicalConservation129393-407.NepstadD.UhlC.SerroE.A.1991.RecuperationoadegradedAmazonianlandscapeorestrecoveryandagriculturalrestoration.AMBIO20248-255.NevilleP.J.BlackD.G.1997.Animalsontheedgethecancellingouteect.MemoirsoMuseumoVictoria56623-630.NieringW.A.1987.VegetationDynamicsSuccessionClimaxinRelationtoPlantCommunityManagement.ConservationBiology1287-95.NordenN.ChazdonR.L.ChaoA.JiangY.H.VilchezAlvaradoB.2009.Resilienceotropicalrainoreststreecommunityreassemblyinsecondaryorests.EcologyLetters12384394.NossR.F.1990.IndicatorsormonitoringbiodiversityAhierarchicalapproach.ConservationBiology4355-364.NovkJ.PrachK.2003.Vegetationsuccessioninbasaltquarriespatternonalandscapescale.AppliedVegetationScience6111116.OBrienT.G.O.KinnairdM.F.DiereneldE.S.Conklin-BrittainN.L.WranghamR.W.SilverS.C.1998.WhatssospecialaboutfgsNature392668.OlsonD.M.DinersteinE.AbellR.AllnuttT.CarpenterC.McClenachanL.DAmicoJ.HurleyP.KassemK.StrandH.TayeM.ThiemeM.2000.TheGlobal200ARepresentationApproachtoConservingtheEarthsDistinctiveEcoregions.ConservationScienceProgramWorldWildlieFund-US.OsborneP.L.2000.TropicalEcosystemsandEcologicalConcepts.CambridgeUniversityPressCambridgepp.238-279. RepairingtheRainforest141PaetkauD.Vazquez-DominguezE.TuckerN.I.J.MoritzC.2009.Monitoringmovementintoandthroughanewlyplantedrainorestcorridorusinggeneticanalysisonatalorigin.EcologicalManagementRestoration10210-216.PalmerM.A.AmbroseR.F.PoN.L.1997.Ecologicaltheoryandcommunityrestorationecology.RestorationEcology5291-300.ParrottaJ.A.TurnbullJ.W.JonesN.1997.Catalyzingnativeorestregenerationondegradedtropicallands.ForestryEcologyandManagement991-7.PatonP.W.C.1994.TheeectoedgeonaviannestsuccesshowstrongistheevidenceConservationBiology817-26.PaulM.CatterallC.P.KanowskiJ.PollardP.C.2012.RecoveryorainorestsoilseedbanksunderdierentreorestationpathwaysineasternAustralia.EcologicalManagementRestoration13140-150.PeelB.2010.RainorestRestorationManualorSouth-EasternAustralia.CSIROPublishing.Pea-ClarosM.deBooH.2002.Theeectsoorestsuccessionalstageonseedremovalotropicalrainoresttreespecies.JournalofTropicalEcology18261-274.PeresC.A.vanRoosmalenM.G.M.2002.PatternsoprimaterugivoryinAmazoniaandtheGuiananshieldimplicationstothedemographyolarge-seededplantsinoverhuntedorests.InLeveyD.J.SilvaW.R.GalettiM.eds.SeedDispersalandFrugivoryEcologyEvolutionandConservation.CABIWallingordUK.PimmS.L.RavenP.2000.Extinctionbynumbers.Nature403843-845.PohlmanC.L.GoosemM.TurtonS.M.2008.EectsoSevereTropicalCycloneLarryonrainorestvegetationandunderstoreymicroclimateneararoadpowerlineandstream.AustralEcology33503-515.PoulsonT.L.PlattW.J.1989.Gaplightregimesinuencecanopytreediversity.Ecology70553-555.PrimackR.B.1987.Relationshipsamongowersruitsandseeds.AnnualReviewofEcologyandSystematics18409-430.SaganC.1997.TheDemon-HauntedWorldScienceasaCandleintheDark.BallantineBooks.NewYork.SakaiS.MomoseK.YumotoT.KatoM.InoueT.1999.BeetlepollinationoShoreaparvifoliasectionMuticaDipterocarpaceaeinageneraloweringperiodinSarawakMalaysia.AmericanJournalofBotany86629.SattlerP.S.WilliamsR.1999.TheConservationStatusofQueenslandsBioregionalEcosystems.EnvironmentalProtectionAgencyQueenslandGovernmentBrisbane.SCBDSecretariatotheConventiononBiologicalDiversity2010GlobalBiodiversityOutlook3.Montral94pages.httpwww.cbd.intdocpublicationsgbogbo3-fnal-en.pdSCBDSecretariatotheConventiononBiologicalDiversity2011.WaysandMeanstoSupportEcosystemRestorationRecommendationXV8bytheExecutiveSecretarySubsidiaryBodyOnScientifcTechnicalandTechnologicalAdviceFiteenthmeetingMontral7-11November2011httpwww.cbd.intdocmeetingSBSTTA-15SchmidtV.SchaeerH.M.WinklerH.2004.Conspicuousnessnotcolourasoragingcueinplant-animalsignalling.Oikos106551557.SchnitzerS.A.BongersF.2011.Increasinglianaabundanceandbiomassintropicalorestsemergingpatternsandputativemechanisms.EcologicalLetters14397-406.SeamanB.S.SchulzeC.H.2010.TheimportanceogalleryorestsinthetropicallowlandsoCostaRicaorunderstoreybirds.BiologicalConservation143391-389.SeimannE.RodgersW.2003.Changesinlightandnitrogenavailabilityunderpioneertreesmayindirectlyacilitatetreeinvasionsograsslands.JournalofEcology91923-931.SERSocietyorEcologicalRestorationInternationalSciencePolicyWorkingGroup.2004.TheSERInternationalPrimeronEcologicalRestoration.www.ser.orgTucsonSocietyorEcologicalRestorationInternational.www.ser.orgpdprimer3.pdShanahanM.SComptonS.G.CorlettR.2001.Fig-eatingbyvertebraterugivoresaglobalreview. 142RepairingtheRainforestBiologicalReviews76529572.ShielsA.B.2011.FrugivorybyintroducedblackratsRattusrattuspromotesdispersaloinvasiveplantseed.BiologicalInvasions13781-792.SlocumM.G.HorvitzC.C.2000.Seedarrivalunderdierentgeneraotreesinaneotropicalpasture.PlantEcology1495162.SpechtR.L.1970.Vegetation.InLeeperG.W.ed.TheAustralianEnvironment.CSIROMelbournepp44-67.StilesE.W.1992.Animalsasseeddispersers.InFennerM.ed..SeedstheEcologyofRegenerationinPlantCommunities.C.A.B.Internationalpp.87-104.StorkN.E.GoosemSTurtonS.M.2008.Australianrainorestsinaglobalcontext.InStorkN.ETurtonS.M.eds.LivinginaDynamicTropicalForestLandscape.BlackwellPublishingLtd.Oxord.StorkN.E.GoosemS.TurtonS.M.2011.StatusandthreatsinthedynamiclandscapesonorthernAustraliastropicalrainorestbiodiversityhotspottheWetTropics.InZachosF.E.HabelJ.C.eds.BiodiversityHotspots.DistributionandProtectionofConservationPriorityAreas.Springer-VerlagBerlinHeidelbergpp.311332.SunD.DickinsonG.R.1996.ThecompetitioneectoBrachiariadecumbensontheearlygrowthodirect-seededtreesoAlphitoniapetrieiintropicalNorthAustralia.Biotropica28272-276.SwaineM.D.WhitmoreT.C.1988.Onthedefnitionoecologicalspeciesgroupsintropicalrainorests.Vegetatio7581-86.TabacchiE.CorrellD.L.HauerR.PinayG.Planty-TabacchiA.WissmarR.C.1998.Developmentmaintenanceandroleoriparianvegetationintheriverlandscape.FreshwaterBiology40497-516.TaylorP.D.FahrigL.HeneinK.MerriamG.1993.Connectivityisavitalelementolandscapestructure.Oikos68571-572.TEEB2010.TheEconomicsofEcosystemsandBiodiversityMainstreamingtheEconomicsofNatureAsynthesisoftheapproachconclusionsandrecommendationsofTEEB.TEEB2011.TheEconomicsofEcosystemsandBiodiversityinNationalandInternationalPolicyMaking.EarthscanLondonandWashington.TerborghJ.1986a.Communityaspectsorugivoryintropicalorests.InEstradaAFlemingT.H.eds.FrugivoresandSeedDispersal.W.JunkPublishersDordrechtpp.371384.TerborghJ.1986b.Keystoneplantresourcesinthetropicalorests.InSoulM.E.ed.ConservationBiologyTheScienceofScarcityandDiversity.SinauerAssociatesSunderlandMApp.330344.TewksburyJ.J.NabhanG.P.2001.Seeddispersaldirecteddeterrencebycapsaicininchillies.Nature412403404.TilmanD.1997.Communityinvasibilityrecruitmentlimitationandgrasslandbiodiversity.Ecology7881-92.TohI.GillespieM.LambD.1999.Theroleoisolatedtreesinacilitatingtreeseedlingrecruitmentatadegradedsub-tropicalrainorestsite.RestorationEcology7288297.TraceyJ.G.1982.TheVegetationoftheHumidTropicalRegionofNorthQueensland.CSIROMelbourne.TraceyJ.G.WebbL.J.1975.VegetationoftheHumidTropicalRegionofNorthQueensland15mapsat1100000scalekey.CSIROLongPocketLaboratoryIndooroopillyBrisbane.TuckerN.MurphyT.1997.TheeectsoecologicalrehabilitationonvegetationrecruitmentsomeobservationsromtheWetTropicsoNorthQueensland.ForestEcologyandManagement99133-152.TuckerN.SimmonsT.2004.Animal-plantinteractionsintropicalrestorationobservationsandquestionsromnorthQueensland.InKanowskiJ.CatterallC.P.DennisA.J.WestcottD.A.eds.Animal-PlantInteractionsinConservationandRestoration.CooperativeResearchCentreorTropicalRainorestEcologyandManagementCairnsQld.TuckerN.SimmonsT.2009.RestoringarainoresthabitatlinkageinnorthQueenslandDonaghysCorridor.EcologicalManagementandRestoration1098-112. RepairingtheRainforest143TurtonS.M.1988.SolarradiationregimesinanorthQueenslandrainorest.ProceedingsoftheEcologicalSocietyofAustralia15101-105.TurtonS.M.HutchinsonM.FAccadA.HancockP.E.WebbT.1999.Producingfne-scalerainallclimatologysuracesorQueenslandswettropicsregion.InKesbyJ.A.StanleyJ.M.McLeanR.F.OliveL.J.eds.GeodiversityReadingsinAustralianGeographyatthecloseofthe20thCentury.SpecialPublicationSeriesNo.6CanberraACTSchooloGeographyandOceanographyUniversityCollegeADFApp.415-428.TurtonS.M.SiegenthalerD.T.2004.Immediateimpactsoaseveretropicalcycloneonthemicroclimateoarain-orestcanopyinnorth-eastAustralia.JournalofTropicalEcology20583-586.UhlC.BuschbacherR.SerraoE.A.S.1988.AbandonedpasturesineasternAmazonia1.Patternsoplantsuccession.JournalofEcology76663-681.vanderPijlL.1982.PrinciplesofDispersalinHigherPlants.SpringerBerlinGermany.vanSchaikC.P.TerborghJ.W.WrightS.J.1993.Thephenologyotropicalorestsadaptivesignifcanceandconsequencesorprimaryconsumers.AnnualReviewsofEcologyandSystematics24353377.Vazques-YanesC.1976.StudiesonthegerminationoseedsOrchromalaqopusSchartz.Turrialba24176-179.WalkerB.HollinC.S.CarpenterS.R.KinzigA.2004.Resilienceadaptabilityandtransormabilityinsocial-ecologicalsystems.EcologyandSociety95.WardD.TuckerN.WilsonJ.2003.Cost-eectivenessorevegetatingdegradedriparianhabitatsadjacenttomacadamiaorchardsinreducingrodentdamage.CropProtection22935-940.WaserN.M.1983.Competitionorpollinationandoralcharacterdierencesamongsympatricplantspeciesareviewoevidence.InJonesC.E.LittleR.J.eds.HandbookofExperimentalPollinationBiology.VanNostrandReinholdNewYorkpp.27793.WaserN.M.ChittkaL.PriceM.V.WilliamsN.M.OllertonJ.1996.Generalizationinpollinationsystemsandwhyitmatters.Ecology771043-1060.WebbL.J.1958.Cyclonesasanecologicalactorintropicallowlandrain-orestnorthQueensland.AustralianJournalofBotany6220-228.WebbL.J.1959.AphysiognomicclassifcationoAustralianrainorests.JournalofEcology47551-570.WebbL.J.1968.EnvironmentalrelationshipsothestructuraltypesoAustralianrain-orestvegetation.Ecology49296-311.WebbL.J.1978.AgeneralclassifcationoAustralianrainorests.AustralianPlants9349-363.WebbL.J.TraceyJ.G.1981.Australianrainorestspatternsandchange.InKeastA.ed..EcologicalBiogeographyinAustralia.JunkTheHaguepp.605-694.WebbL.J.TraceyJ.G.JessupL.W.1986.RecentevidenceorautochtonyoAustraliantropicalandsubtropicalrainorestoristicelements.Telopea2575-589.WebbL.J.TraceyJ.G.WilliamsW.T.1972.Regenerationandpatterninsubtropicalrainorest.JournalofEcology60675-695.WebbL.J.TraceyJ.G.WilliamsW.T.1976.Thevalueostructuraleaturesintropicaloresttypology.AustralianJournalofEcology13-28.WebbL.J.TraceyJ.G.WilliamsW.T.LanceG.N.1967.Studiesinthenumericalanalysisocomplexrainorestcommunities.I.A.comparisonomethodsapplicabletositespeciesdata.JournalofEcology55171-191.WebbL.J.TraceyJ.G.WilliamsW.T.LanceG.N.1970.Acomparisonothepropertiesooristicandphysiognomic-structuraldata.JournalofEcology58203-232. 144RepairingtheRainforestWerrenG.L.GoosemS.TraceyJ.G.StantonJ.P.1995.TheAustralianWetTropicscentreoplantdiversity.InDaviesS.D.HeywoodV.H.HamiltonA.C.eds.WorldCentresofPlantDiversity.WWFIUCNOxordInormationPresspp.500-506.WestcottD.A.BradordM.G.DennisA.J.Lipsett-MooreG.2005.KeyruitresourcesinAustraliastropicalrainorests.InDewJ.L.BoubliJ.P.eds.FruitsandFrugivoresTheSearchforStrongInteractors.KluwerAcademicPublishersNewYorkpp.23660.WestcottD.A.DennisA.J.BradordM.G.HarringtonG.N.McKeownA.2008.SeeddispersalprocessesinAustraliastropicalrainorests.InStorkN.E.TurtonS.M.eds.LivinginaDynamicTropicalForestLandscape.BlackwellPublishingLtd.Oxordpp211-224.WestobyM.LeishmanM.LordJ.1996.Comparativeecologyoseedsizeanddispersal.PhilosophicalTransactionsoftheRoyalSociety3511309-1318.WestraL.MillerP.KarrJ.R.ReesW.E.UlanowitzR.E.2000.Ecologicalintegrityandtheaimsotheglobalecologicalintegrityproject.InPimentelD.WestraL.NossR.F.eds.EcologicalIntegrityIntegratingEnvironmentConservationandHealthIslandPresspp1944.WheelwrightN.T.1993.Fruitsizeinatropicaltreespeciesvariationpreerencebybirdsandheritability.Vegetatio10816374.WhiteE.TuckerN.MeyersN.WilsonJ.2004.SeeddispersaltoisolatedrevegetatedrainorestpatchesinNorthQueensland.ForestEcologyandManagement192409-426.WhiteE.Vivian-SmithG.BarnesA.2009.Variationinexoticandnativeseedarrivalandrecruitmentobirddispersedspeciesinsubtropicalorestrestorationandregrowth.PlantEcology204231-246.WhitmoreT.C.1975.TropicalRainForestsoftheFarEast.ClarendonPressOxord.WhitmoreT.C.1978.Gapsintheorestcanopy.InTomlinsonP.B.ZimmermanM.H.eds.TropicalTreesasLivingSystems.CambridgeUniversityPressCambridgepp.639-655.WhitmoreT.C.1982.Patternandprocessinorests.InNewmanE.I.ed.ThePlantCommunityasaWorkingMechanism.BlackwellOxordpp.45-59.WhitmoreT.C.1984.TropicalRainForestsoftheFarEast.SecondEdition.ClarendonPress.Oxord.WiensJ.J.etal.2010.Nicheconservatismasanemergingprincipleinecologyandconservationbiology.EcologyLetters1313101324.WilliamsG.AdamP.2010.TheFloweringofAustraliasRainforests.APlantandPollinationMiscellany.CSIROPublishingCollingwoodAustralia.WilliamsJ.ReadC.NortonA.DoversS.BurgmanM.ProctorW.AndersonH.2001.AustraliaStateoftheEnvironmentReport2001BiodiversityThemeReportCSIROonbehalotheDepartmentotheEnvironmentandHeritageCanberra.httpwww.environment.gov.ausoe2001publicationstheme-reportsbiodiversitybiodiversity01-3.htmlWilliamsS.E.2006.VertebratesoftheWetTropicsRainforestsofAustraliaSpeciesDistributionsandBiodiversity.CooperativeResearchCentreorTropicalRainorestEcologyandManagement.RainorestCRCCairnsAustralia282pp.WillsonM.F.CromeF.H.J.1989.PatternsoseedrainattheedgeoatropicalQueenslandrainorest.JournalofTropicalEcology5301-308.WillsonM.F.IrvineA.K.WalshN.G.1989.VertebratedispersalsyndromesinsomeAustralianandNewZealandplant-communitieswithgeographiccomparisons.Biotropica2113347.WillsonM.F.TravesetA.2000.Theecologyoseeddispersal.InFennerM.ed.SeedsTheEcologyofRegenerationinPlantCommunities.2nded.WallingordCABInternationalpp.85110.WillsonM.F.WhelanC.J.1990.Theevolutionoruitcolorinfeshy-ruitedplants.AmericanNaturalist136790809. RepairingtheRainforest145WilsonE.O.2002.TheFutureofLife.AlredE.KnopNewYork.WilsonJ.WhissonD.1993.TheManagementofRodentsinNorthQueenslandCaneFields.PublicationBS16S.SugarResearchandDevelopmentCorporationBrisbane.WoodordR.2000.Convertingadairyarmbacktoarainorestwatercatchment.EcologicalManagementandRestoration183-93.WorboysG.L.FrancisW.L.LockwoodM.2010.ConnectivityConservationManagementAGlobalGuideEarthscanLondon.WrightS.J.2010.Theutureotropicalorests.AnnalsoftheNewYorkAcademyofScience1195127.WTMA2012.VegetationoftheWetTropicsofQueensland.Edition1.35mapsat150000scalekey.WetTropicsManagementAuthorityCairns.WunderleJ.R.1997.Theroleoanimalseeddispersalinacceleratingnativeorestregenerationondegradedtropicallands.ForestEcologyandManagement99223-235.WWF2012.LivingPlanetReport.WorldWildlifeFundGlandSwitzerland.YachiS.LoreauM.1999.BiodiversityandecosystemproductivityinafuctuatingenvironmentTheinsurancehypothesis.ProceedingsoftheNationalAcademyofSciencesUSA9614631468.YahnerR.H.1988.Changesinwildliecommunitiesnearedges.ConservationBiology2333-339.YatesD.J.UnwinG.L.DoleyD.1988.Rainorestenvironmentandphysiology.ProceedingsoftheEcologicalSocietyofAustralia1531-37.YoungP.A.R.McDonaldW.J.1987.ThedistributioncompositionandstatusorainorestsinsouthernQueensland.InWerrenG.L.KershawA.P.eds.TheRainforestLegacyAustralianNationalRainforestStudyVol.1.AustralianHeritageCommissionAGPSCanberra. 146RepairingtheRainforestAPPENDIX1KEYTOTHERAINFORESTTYPESOFTHEWETTROPICSStep1IdentiysizeomatureexposedcanopyorsunleavesRefertoExplanatorynotesatendofkeyforleafsizedeterminationrulesMesophyllandnotophyllleasizesmostcommonincanopy..............................................GroupAORPalmleaveseatheroranmostcommonincanopy..............................................GroupBORNotophyllandmicrophyllleasizesmostcommonincanopy..............................................GroupCORMicrophyllleasizemostcommonincanopy..............................................GroupDORSclerophyllleaspeciesemergentorcommonincanopy..............................................GroupEGROUPAMESOPHYLLLEAFSIZESMOSTCOMMONINCANOPY1.Leavesorleafetsgenerallyexceed12.5centimetresinlengthRobustlianesvascularepiphytesplankbuttressesandcompoundleavescommonandorconspicuousTrunksuracesgenerallyobscuredbyaroidsepiphytesandclimbingpalmsStemdiametersocanopytreesirregularmanyaverage60-120centimetresCanopyheight20-40metres.............................................2ORLeavesorleafetsgenerallyexceed12.5centimetresinlengthRobustlianesandvascularepiphytesuncommonandorinconspicuousinuppertreelayersSpurratherthanplankbuttressesoccasionalbutconspicuousTrunkspacesopenstemdiametersocanopytreesgenerallyregularandaverage60centimetresCanopyheight25-35metresSclerophyllspeciessuchasAcaciaspp.maybescatteredincanopy.............................................52.Deciduousemergentandtopcanopytreesrarenotevident.............................................3ORDeciduousemergentandtopcanopytreespresentorconspicuous.............................................7 RepairingtheRainforest147GROUPAMESOPHYLLLEAFSIZESMOSTCOMMONINCANOPY3.Featherpalmtreesabundantincanopy.............................................GROUPBORFanpalmtreesabundantincanopy.............................................GROUPBORPalmtreesnotevidentoruncommonincanopy.............................................4GROUPGROUPAMESOPHYLLLEAFSIZESMOSTCOMMONINCANOPYRAINFORESTCODE4.COMPLEXMESOPHYLLVINEFORESTiVerywetandwetlowlandsandfoothillsmainlyonalluviumandbasalts.iiMoisttoverywetclouduplandsmainlyonbasaltsandalluvium.iiiMoisttowetlowlandsandfoothillsonalluviumgalleryforest.ivVerywetfoothillsonbasalticterracesandscreeslopes-dominatedbyBackhousiabancrotii.subtypeof1avVerywetlowlandsoncalcareoussandridges-characterisedbyIntsiabijugaBeilschmiediaobtusioliaandPalaquiumgalactoxylon.variantof1aCMVF1a1b1c1d1e5.Palmtreesnotevidentoruncommonincanopy.............................................6GROUP6.MESOPHYLLVINEFORESTiVerywettomoistlowlandsfoothillsanduplandsonavarietyofgeologiesiiVerywetlowlandsondunes.iiiWettoverywetlowlandsonalluvium-withArchontophoenixalexandraeprominentinthesub-canopyandcanopy.subtypeof2aivVerywetlowlandsonseasonallyinundatedalluvium-characterisedbyBarringtoniaracemosaHibiscustiliaceusandHeritieralittoraliswithArchontophoenixalexandraeandLicualaramsayivar.ramsayiinthesub-canopy.subtypeof2avVerywetlowlandsondunes-characterisedbyCalophylluminophyllumTerminaliaarenicolaDilleniaalataMyristicainsipidavar.insipidaPlanchonellamyrsinodendronMillettiapinnataandHibiscustiliaceus.variantof2bviWettoverywetuplandsonunstablemetamorphicrockslopes-commonlywithFicusspp.ScheferaactinophyllaandAlstoniascholaris.variantof2aMVF2a2b2c2d2e2f 148RepairingtheRainforest7.Deciduousandsemi-deciduousemergentandtopcanopypresentorconspicuous-Deciduousreferstocertainindividualsinthespeciespopulationcompletelylosingtheirleavesforatimeduringtheyearandthisleaflossisobligatoryforthespecies-Semi-deciduousreferstodeciduousspecieswhoseleaffalliscontrolledbytheseverityofthedryseasonratherthanbeingobligate..............................................88.SEMI-DECIDUOUSMESOPHYLLVINEFORESTiMoisttowetlowlandsandfoothillsonavarietyofgeologiesiiWetlowlandsonalluviumcoarsegraniticoutwash-characterisedbyNaucleaorientalisCryptocaryahypospodiaandCastanospermumaustrale.variantof1ciiiWetfoothillsonmetamorphicsonsteepslopes-occasionalAleuritesmoluccanaandAlstoniascholariswithorwithoutBombaxceibavar.leiocarpumemergentsandvariablesclerophyllspecies.variantof3aSDMVF3a3b3cGROUPBPALMLEAVESMOSTCONSPICUOUSINCANOPYRAINFORESTCODE1.Featherpalmtreesabundantincanopy..........................................2ORFanpalmtreesabundantincanopy..........................................32.FEATHER-PALMVINEFORESTiVerywetlowlandsonseasonallyinundatedalluviumdominatedbyArchontophoenixalexandrae.iiVerywetlowlandsonseasonallyinundatedalluviumcharacterisedbyArchontophoenixalexandraeSyzygiumtierneyanumandBarringtoniaracemosa.subtypeof4aiiiWetandverywetuplandsongranitessteepupperslopesandgullybottomsdominatedbyArchontophoenixalexandrae.subtypeof4aFPVF4a4b4c3.FAN-PALMVINEFORESTiWetandverywetlowlandsfoothillsanduplandsonalluviumdominatedbyLicualaramsayivar.ramsayi.iiWetuplandsonmetamorphicsalluviumandgranitesdominatedbyLicualaramsayivar.ramsayiandPandanusspp.swamp.variantof5aFAPVF5a5b RepairingtheRainforest149GROUPCNOTOPHYLLLEAFSIZESMOSTCOMMONINCANOPY1.Leavesorleafetsgenerallyexceed7.5centimetresinlengthbutgenerallylessthan12.5centimetresRobustandslenderwoodylianesvascularepiphytescommonandorconspicuousPlankbuttressescommonandorconspicuousCompoundentireleavescommonTrunksuracesgenerallyobscuredbythearoidPothosStemdiametersocanopytreesirregularmanyaverage60-120centimetres.............................................2ORLeavesorleafetsgenerallyexceed7.5centimetresinlengthbutgenerallylessthan12.5centimetresRobustlianesvascularepiphytesandplankbuttressesuncommonandorinconspicuousTreecrownsmostlyevergreenbutwithaewsemi-evergreenordeciduousspeciesi.e.structuraleaturesareintermediatebetweensimpleandcomplextypesCanopyclosureoccursatheightsabove10metres.............................................5ORLeavesorleafetsgenerallyexceed7.5centimetresinlengthbutgenerallylessthan12.5centimetresStuntedtreegrowthinwhichcanopyclosesat3-10metres.............................................6ORLeavesorleafetsgenerallyexceed7.5centimetresinlengthbutgenerallylessthan12.5centimetresRobustlianesandvascularepiphytesinconspicuousintreetopsSlenderwoodyandwirylianescommonandconspicuousinunderstoreyPlankbuttressesuncommonandorinconspicuousSimpletoothedleavescommonTrunkspacesopenStemdiametersexceptoremergentsgenerallyregularaverage60centimetresTreecrownsevergreenandgenerallysparseandnarrowStrongtendencytosinglespeciesdominancee.g.CeratopetaluminuppertreelayersCanopyheightevenaveraging20-35metresOtenwithsclerophyllousemergentsandco-dominants..............................................7ORLeavesorleafetsgenerallyexceed7.5centimetresinlengthbutgenerallylessthan12.5centimetresRobustslenderandwirylianesuncommonandorinconspicuousFleshyvascularepiphytesmaybeconspicuousontrunksPlankbuttressesinconspicuousSimpleentireleavescommonDeciduousspeciesgenerallyabsentbutmanytreecrownsbecomesparseduringthedryseasondependingupontheseverityothedryseasoni.e.semi-evergreenOtenwithsclerophyllousemergentsandco-dominantsCanopyheightgenerally10-20metres.............................................8 150RepairingtheRainforestORLeavesorleaetsgenerallyexceed7.5centimetresinlengthbutgenerallylessthan12.5centimetresRobustslenderandwirylianesuncommonandinconspicuousFleshyvascularepiphytesconspicuousontrunksPlankbuttressesuncommonandinconspicuousSimpleentireleavescommonDeciduousspeciesgenerallyabsentbutmanytreecrownsbecomesparseduringthedryseasondependingupontheseverityothedryseasoni.e.semi-evergreenCanopytreescommonlybranchedlowdownshrub-likeStuntedcanopytreegrowthCanopyheightevenaverage3-9metres.............................................9ORLeavesorleaetsgenerallyexceed7.5centimetresinlengthbutgenerallylessthan12.5centimetresRobustandslenderwoodylianesandvascularepiphytescommonandconspicuousDeciduousandsemi-deciduousemergentandcanopytreespeciescommon.............................................102.Canopyheightunevenaverage20-45metresEmergentsmostlyevergreenwithbroadumbrella-likebranches.............................................3ORCanopyheightunevenaverage15-35metresOccasionaldeciduousspecieswithemergentAraucariaorAgathis35-50metrescommon..............................................4GROUPCNOTOPHYLLLEAFSIZESMOSTCOMMONINCANOPYRAINFORESTCODE3.COMPLEXNOTOPHYLLVINEFORESTiWetandmoistclouduplandsandhighlandsmostlyonbasalts.iiVerywetlowlandsandoothillsongraniteboulderfelds.iiiDryoothillsonalluviumriverineoodplains-characterisedbyCorymbiatorellianaAcaciacelsaElaeocarpusgrandisFlindersiapimentelianaGrevilleabaileyanaandemergentArgyrodendronpolyandrum.varianto7cCNVF6a6b6c RepairingtheRainforest151GROUPCNOTOPHYLLLEAFSIZESMOSTCOMMONINCANOPYRAINFORESTCODE4.ARAUCARIANNOTOPHYLLVINEFORESTiDryoothillsanduplandsongranitesandrhyolites-characterisedbyAraucariacunninghamiivar.cunninghamiiemergents.iiVerywetuplandsongranitessteeprockyslopes-characterisedbyAraucariacunninghamiivar.cunninghamii.varianto7aiiiMoistoothillsanduplandsonmetamorphicsandgranites-otenwithemergentAgathisrobusta.ivWetuplandsandhighlandsongranites-characterisedbyAraucariabidwilliiemergents.varianto10aANVF7a7b7c7d5.NOTOPHYLLVINEFORESTiMoistlowlandsondunes.iiMoisthighlandsonbasalts.iiiVerywetoothillsonunstablebasaltescarpments-characterisedbyernspp.ChionanthusramiforaandScheferaactinophylla.varianto2aivMoisttoverywetoothillsanduplandsonavarietyogeologies-dominatedbyBlepharocaryainvolucrigera.vMoisttoverywetoothillstohighlandonsteepslopesongranitecharacterisedbyPlanchonellaeuphlebiaandPodocarpusgrayae.subtypeo14aNVF8a8b8c8d8e6.NOTOPHYLLVINETHICKETiWetlowlandsonduneswithorwithoutSyzygiumorteSyzygiumbanksiiAcaciacrassicarpaDrypetesdeplancheiandElaeodendronmelanocarpumrestrictedtoHinchinbrookIsland.varianto8aiiMoistlowlandsongranitestransportedcoastalcobbleandboulderridges.RestrictedtoOrpheusandCuracoaIslands.varianto8aiiiWetoothillsonexposedrockygraniteheadlands.ivMoistandverywetlowlandsondunes-dominatedbyBlepharocaryainvolucrigeraAtractocarpussessilisChoricerastricorneEndiandraglaucaandSyzygiumbanksii.NVT9a9b9c9d 152RepairingtheRainforestGROUPCNOTOPHYLLLEAFSIZESMOSTCOMMONINCANOPYRAINFORESTCODE7.SIMPLENOTOPHYLLVINEFORESTiMoisttoverywetuplandsandhighlandsonmetamorphicsgranitesandrhyolites.iiWetlowlandsonseasonallyinundatedalluvium-withSyzygiumangophoroides.iiiMoisttoverywetlowlandsondunes-characterisedbySyzygiumortesubsp.orteBuchananiaarborescensandChionanthusramifora.ivVerywetuplandsongranitesandmetamorphics-dominatedbyStockwelliaquadrida.vMoistfoothillsonmetamorphicsinseepageareas-characterisedbyGrevilleabaileyanaFagraeacambageiGarciniawarreniiMischocarpusexangulatusandPandanusmonticola.viMoisthighlandsonrhyolites-characterisedbyPseudoweinmannialachnocarpaandemergentAgathismicrostachya.subtypeof10aviiVerywetuplandsongranites-dominatedbyDryadodaphnetrachyphloia.subtypeof10aviiiVerywetuplandsonmetamorphics-dominatedbyCeratopetalumvirchowii.subtypeof10aixWetuplandsongranites-characterisedbyArgyrodendronpolyandrumandFlindersiabrayleyana.variantof10axWetfoothillsonsharplybrokenmetamorphictopography-dominatedbyAcaciacelsa.variantof10axiMoisttoverywetuplandsandhighlandsongranitesandmetamorphics-shallowsoilsseveredrainagewindshearing.subtypeof10axiiMoistandverywetlowlandsonalluviumonshallowsandislandswithinswamps-withBlepharocaryainvolucrigeraAcaciacelsaFlindersiabourjotianaSyzygiumangophoroidesandDilleniaalata.subtypeof2aSNVF10a10b10c10d10e10f10g10h10i10j10k10l8.SIMPLESEMI-EVERGREENNOTOPHYLLVINEFORESTiMoisttodryfoothillsanduplandsongranitesandmetamorphics4aSSENVF11a9.SIMPLESEMI-EVERGREENNOTOPHYLLVINETHICKETiDryuplandsonrhyolites.iiMoistuplandsongranites-withemergentArgyrodendronpolyandrum.iiiDryuplandsonrhyolites-characterisedbyArgyrodendronpolyandrumStrychnospsilospermaCrotoninsularisBrombyaplatynemaandGeijerasaliciolia.SSENVT12a12b12c RepairingtheRainforest153GROUPCNOTOPHYLLLEAFSIZESMOSTCOMMONINCANOPYRAINFORESTCODE10.SEMI-DECIDUOUSNOTOPHYLLVINEFORESTiMoistanddryoothillsanduplandsonbasalts.iiMoistlowlandsandoothillsonmetamorphicalluvialandrhyoliticcoastalheadlands-characteredbyTerminaliaarenicolaandAcaciapolystachya.varianto13aiiiMoistlowlandsondunes-characterisedbyMeliaazedarachPleiogyniumtimorenseGanophyllumalcatumParaserianthestoonaFicusracemosaArgyrodendronpolyandrumandAlstoniascholaris.varianto7civMoistoothillsanduplandsonmetamorphicandgraniticrockygorgesandtalusslopes-characterisedbyGanophyllumalcatumPleiogyniumtimorenseArgyrodendronpolyandrumParaserianthestoonaMeliaazedarachandChionanthusramifora.subtypeo7cSDNVF13a13b13c13dGROUPDMICROPHYLLLEAFSIZESMOSTCOMMONINCANOPY1.Leavesandleafetsgenerallylessthan7.5centimetresinlengthMossyandvascularepiphytesinconspicuousinuppertreelayersRobustlianescommonandconspicuousPlankbuttressesnotevidentPricklyandthornyspeciescommonandorconspicuousinusuallydenseshrubunderstoreyGroundlayersparseCompoundleavesandentireleamarginscommon.............................................2ORLeavesandleafetsgenerallylessthan7.5centimetresinlengthMossyandvascularepiphytescommonandorconspicuousinuppertreelayersRobustlianesinconspicuousSlenderandwirylianesgenerallycommonandconspicuousPlankbuttressesabsentPricklyandthornyspeciesabsentSimpleleaveswithtoothedmarginscommonStrongtendencytosinglespeciesdominanceintreelayerTreeernsandgroundernsabundantandorconspicuousSclerophyllemergentsgenerallypresentinmarginalsituations.............................................62.Canopyheightunevenaverage10-15metreswithmixedevergreenandsemi-evergreenemergentanduppertreelayerspeciesAraucariananddeciduousemergentsuncommonorabsent.............................................3OR 154RepairingtheRainforestCanopyheightunevenaverage5-10metreswithmixedevergreensemi-evergreenanddeciduousemergentsto10-20metres.............................................4ORCanopyheightunevenanddiscontinuousaverage5-10metresMostemergentsdeciduousandmanyunderstoreyspeciesaredeciduousorsemi-evergreen..............................................5GROUPDMICROPHYLLLEAFSIZESMOSTCOMMONINCANOPYRAINFORESTCODE3.LOWMICROPHYLLVINEFORESTiMoisttoverywethighlandsongranitesmetamorphicsandrhyoliteswithferns.iiMoistuplandsongranitedominatedbyAgathisrobustaandArgyrodendronpolyandrum.variantof7ciiiVerywethighlandsonexposedgraniticridges-characterisedbyCeratopetalumvirchowiiplusvineandfernspecies.subtypeof14aivVerywethighlandsongranites-characterisedbyCinnamomumpropinquumplusvineandfernspecies.subtypeof14avVerywetuplandsonmetamorphics-characterisedbyUromyrtustenellaplusvineandfernspecies.subtypeof14aviWetuplandsonmetamorphics-withSyzygiumkurandaPouteriaeuphlebiaPodocarpusgrayaeMusgraveastenostachyaStenocarpuscryptocarpusandsedges.subtypeof14aSMVF14a14b14c14d14e14f4.SEMI-EVERGREENVINETHICKETiMoisttodryfoothillsanduplandsongranitesandrhyolites-characterisedbyemergentAraucariacunninghamiivar.cunninghamii.iiDryuplandsonbasaltsunconsolidatedpyroclasticvolcaniccones.iiiVerywetuplandsongranitesandmetamorphicsimpededdrainage-withemergentLicualaramsayivar.ramsayiandOraniopsisappendiculata.ivMoisttowetlowlandsondunes-commonlywithMimusopselengiwithorwithoutTerminaliamuelleriSersalisiasericeaandExocarposlatifolius.subtypeof8aMVT15a15b15c15d5.DECIDUOUSVINETHICKETiMoisttodryfoothillsongranites.iiMoistfoothillsonsteepgraniticrocktalusandboulderslopes-withGossiabidwillii.subtypeof16aDVT16a16b RepairingtheRainforest1556.Canopytreesstuntedgenerallyevenheightandmixedwithsclerophyllsaverage5-10metres.............................................77.MICROPHYLLFERNTHICKETiVerywetcloudhighlandsongranites.iiWetuplandsonsteepgraniticboulderfeldsandscreeslopes-withTrochocarpabellendenkerensisUromyrtustenellaRhodomyrtusmacrocarpaPlacospermumcoriaceumandMusgraveastenostachya.subtypeo17aMFT17a17bGROUPESCLEROPHYLLLEAFSPECIESEMERGENTORCOMMONINCANOPY1.CanopyalmostexclusivelyAcaciaspeciesRobustlianesvascularepiphytesplankbuttressesabsentoruncommonSlenderwoodyandwirylianescommoninunderstoreyTrunksuracesgenerallyunobscuredCanopyheightaverage1530metresStemdiametersocanopytreesregularUnderstoreyovariableheightcomprisingrainorestspeciestypicaloadjacentmesophyllornotophyllrainorests.............................................2ORCanopyalmostexclusivelyAcaciaspeciesStuntedtreegrowthinwhichcanopyclosesat5-10metres.............................................3OREucalyptspeciesconspicuousinemergentoruppercanopyEucalyptcomponentgenerallywithlargespreadingcrownsRobustlianesvascularepiphytesplankbuttressesabsentoruncommonSlenderwoodyandwirylianescommoninunderstoreyCanopyunevenheightaverage1025metresEmergenteucalyptsaverage30-36metreswhenpresentUnderstoreyovariableheightcomprisingrainorestspeciestypicaloadjacentmesophyllornotophyllrainorests.............................................4ORLophostemonspeciesconspicuousincanopyLophostemonspecieslargerandmoreabundantinwetandalluvialsituationsRobustlianesvascularepiphytesplankbuttressesabsentoruncommonSlenderwoodyandwirylianescommoninunderstoreyShrubssedgesgroundernstreeernsandclimbingernsabundantwherevercanopyhasbeenbrokenCanopyunevenheightaverage1025metresUnderstoreyovariableheightcomprisingsclerophyllandrainorestspeciestypicaloadjacentmesophyllornotophyllrainorests.............................................5 156RepairingtheRainforestGROUPESCLEROPHYLLLEAFSPECIESEMERGENTORCOMMONINCANOPYRAINFORESTCODE2.CLOSEDACACIAFORESTSiClosedAcaciacelsaforestwithorwithoutvariablerainforestspecies.Verywettodryfoothillsuplandsandhighlandsongranitesandmetamorphics.iiClosedAcaciamangiumforestwithAcaciacelsa.Moisttoverywetlowlandsandfoothillsmostlyongranites.iiiClosedAcaciapolystachyaforestwithvariablerainforestspecies.Moisttoverywetfoothillsanduplandsonmetamorphicsandgranites.ivClosedAcaciamelanoxylonforestwithAcaciacelsa.Wethighlandsongranitesandrhyolites.vClosedAcaciapolystachyaforestwithvariablerainforestandsclerophyllforestspeciesonseasonalwatercourses.Wetfoothillsonmetamorphics.CAF18a18b18c18d18e3.CLOSEDACACIATHICKETSiClosedAcaciamangiumthicketwithAcaciacrassicarpaHibiscustiliaceusBreyniacernuaCupaniopsisanacardioidesandTerminaliamuellerionshallowsanddunesoverlyingsalinesoils.Moistlowlandsondunes.CAT18f4.CLOSEDEUCALYPTFORESTSiClosedCorymbiatorellianaforestwithCorymbiaintermediawithorwithoutEucalyptustereticornissubsp.tereticornisandvariablerainforestspecies.Wettodryuplandsonmetamorphicsrhyolitesandgranites.iiOpentoclosedEucalyptuspellitaforestwithCorymbiaintermediaandEucalyptustereticornissubsp.tereticorniswithorwithoutCorymbiatorellianaandvariablerainforestspecies.Wettoverywetlowlandsandfoothillsmostlyonmetamorphics.CEF19a19b5.CLOSEDLOPHOSTEMONFORESTSiOpentoclosedLophostemonconfertusforestwithvariablerainforestandsclerophyllforestspecies.Verywettodryfoothillstohighlandsonavarietyofgeologies.CLF20a RepairingtheRainforest157VARIANTSDistinctunusualoccurrencesoamorecommonvegetationtypethatisabletobeexplainedbyatypicalenvironmentalcontrollingactors.SUBTYPESMajordiscernableoristicsub-associationsomorecommonvegetationtypesgenerallyoundundersimilarhabitatconditionstothemorecommontype.DETERMININGLEAFSIZESANDTYPESLeasizesareclassifedintothreeclasseswithsizedeterminedbythelengthotheleabladeasollowsMesophylllargeleaveslongerthan12.5centimetresbutlessthan25centimetres.Notophyllleaveslongerthan7.5centimetresbutlessthan12.5centimetres.Microphyllsmallleaveslessthan7.5centimetreslong.SclerophyllleavesaredefnedinthetraditionalAustraliansenseasleavesromtypicallynon-rainoresttreegenerasuchasEucalyptusCorymbiaAcaciaandLophostemon.RulesordeterminingcommonleasizeOnlyuppercanopytreeleavesareconsideredIncompoundleavesaleaetisregardedasaleaLeaorleaetshapesuchaslanceolateorellipticalisassumedtoberegularVerydeeplydividedleavessuchaspalmsareignoredApplyonlytomatureexposedsunleavesoevergreennotdeciduousspeciesAvoidshadeleavesWheretwoadjacentleaclassesaremostcommonthelargerleasizeistakene.g.mesophyllvineorestormixedmesophyll-notophyllsizes.Deciduousarethoserainorestcommunitiesinwhichatleastcertainindividualscompletelylosetheirleavesoraperiodotheyearandthatthisbehaviourisobligatoryandfxedorthespecies.Semi-deciduousarethoserainorestcommunitiesinwhichthereareanumberoperiodicallyleaessspeciesbutthesedeciduousspeciesareacultativesothattheirlea-alliscontrolledbytheseverityothedryseasonratherthanbybeingobligate.Semi-evergreenarethoserainorestcommunitiesinwhichewornoneothespeciesaretrulydeciduousandmostothosespeciesthatdoshedtheirleavesdosoincompletelydependingontheseverityothedryseason.EXPLANATORYNOTES www.wettropics.gov.auwww.biotropica.com.auTheglobalsignifcanceoTheWetTropicsoQueenslandsrichnaturalvalueswasrecognisedwhenitwasinscribedontheWorldHeritagelistin1988.ApartromitssuperlativenaturalbeautytheWorldHeritageAreaisareugeornumerousrareanduniqueplantsandanimals.ItisawindowtoaworldoancestralbeginningsreminiscentoourGondwananheritage.Theorestsherecontainexamplesosomeothemajorleapsintheearthsevolutionaryhistoryincludingtheoriginevolutionanddispersalooweringplants.Itisahistoricaltimelineotheevolutionomarsupialsandtheemergenceanddispersalosongbirds.WiththegreatestdiversityoplantsandanimalsinAustraliatheWetTropicsoQueenslandisoneotheworldsmostsignifcantconservationassets.Themountingpressuresoourmodernworldontheenvironmentmakeitimperativethatweacttoensurethislivingvibrantlegacyispassedontouturegenerations.Thisbookisamustorindividualsandorganisationsinvolvedinlandcareandrehabilitationotropicalorests.Itisaninormativehandbookthatdelvesintothetheoryorainorestre-establishmentwhileprovidingpracticalsolutionsorsuccessulrestoration.